hitting the breaks

Once-popular bus service departs Houston and Texas after bankruptcy filing

You won't be seeing any Megabus vehicles traversing Texas highways any more. Photo via Getty Images

Texans lost a more sustainable way of traveling the Lone Star State this month.

Megabus, the cheap and efficient bus company that offered rides for as low as $1, has ended service across Texas, including all routes operating between Austin, Dallas, Grand Prairie, Houston, and San Antonio.

According to a notice on the company's website, they shut down the Texas routes on August 16 as part of a set of new nationwide route changes that also included offloading other routes to competing operators.

Known for its eye-catching double-decker royal blue buses, Megabus was first launched in the U.K. in 2003, then came to the U.S. in 2006. It generated considerable excitement when it entered the Texas market in 2012, by offering free Wi-Fi, restrooms, and fares for as low as $1.

The changes come after Coach USA, Megabus' owner, filed for Chapter 11 bankruptcy, winning court approval to sell its Megabus service in July. The company blamed its bankruptcy on a decline in ridership during the pandemic.

Shutdowns:

  • Routes operating between Atlanta, Charlotte, Durham, Richmond, and Washington, D.C. will be discontinued as of August 16th, 2024. Customers with tickets booked on these services have been notified and refunds have been processed.
  • Routes operating between Dallas, Austin, San Antonio, and Houston will be discontinued as of August 16th, 2024. Customers with tickets booked on these services have been notified and refunds have been processed.

New operators:

  • Routes operating between New York, Baltimore, Philadelphia, and Washington, D.C. will be operated by Peter Pan Bus Lines
  • Routes operating between New York, State College, Harrisburg, King of Prussia, and Pittsburgh will be operated by Fullington Trailways

All other routes in the United States and Canada will operate as normal.

Megabus still operates in more than 500 different cities and university campuses across the U.S., including several popular routes between New York, Philadelphia, and Washington, D.C.

———

This article originally ran on CultureMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News