coming soon

Global hydrogen company makes U.S. entrance through Houston-area facility acquisition

A Belgian hydrogen company has expanded to the United States by way of the Houston area. Photo via johncockerill.com

A Belgian electrolyzer manufacturer has acquired a facility in Baytown, expanding to North America for the first time.

John Cockerill Hydrogen announced today that its acquired a manufacturing space south of Houston that will be retrofitted to become one of the largest alkaline manufacturing facilities in the country. It's slated to deliver as early as the third quarter of next year.

“We are excited for the US launch, the first step in our partnership journey with North American businesses and stakeholders who seek to decarbonize and advance the energy transition,” François Michel, CEO of John Cockerill Group, says in a news release.

Expected to create 200 new jobs and produce one gigawatt of electrolyzers a year, the project is slated to deliver as early as the third quarter of next year.

According to the release, Chambers County's highway and barge access, storage and pipeline proximity, and other existing infrastructure were key factors for the company's decision. John Cockerill Hydrogen, which has an office in Houston already, reports that Houston's recent selection by the Department of Energy to be one of seven hubs to receive funding for hydrogen development was another part of the city's appeal.

“With an existing energy ecosystem comprised of competitive natural resources, a highly skilled talent base, and existing infrastructure, Houston was the natural choice for our entry to North America,” Nicolas de Coignac, president of the Americas for John Cockerill, says in the release. “We look forward to partnering with local and state officials, business organizations, academic institutions and other Houston-area stakeholders playing a part in meeting the ambitious goals to reduce greenhouse gases emissions and ensuring energy security and resilience.”

The company has a relationship supporting the Greater Houston Partnership’s Houston Energy Transition Initiative, per the news release, and plans to host a groundbreaking event sometime this year with local business, industrial, and community leaders.

“We are pleased to welcome John Cockerill Hydrogen’s highly anticipated U.S. launch to Houston,” Bob Harvey, president and CEO of GP, says in the release. “This momentous announcement — closely following the U.S. Energy Department’s selection of HyVelocity to develop a Gulf Coast Hydrogen Hub – serves as a resounding testament to our city’s unrivaled status as the energy — and energy transition — capital of the world. With our exceptional infrastructure and top-tier talent, Houston is primed for exponential growth. John Cockerill Hydrogen’s partnership within our hydrogen ecosystem will be nothing short of transformative. Together, we will shape the future of energy and solidify Houston’s position in theclean hydrogen space.”

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News