big winners

Houston clean tech startup pitch competition awards prizes at annual CERAWeek event

Here's what student-founded startups are leaving CERAWeek with fresh funding. Photo courtesy of HETI

For the third year, the Greater Houston Partnership's Houston Energy Transition Institute hosted its startup pitch competition at CERAWeek by S&P Global. A dozen startups walked away with recognition — and three some with cash prizes.

HETI joined partners Rice Alliance for Technology and Entrepreneurship and TEX-E for the 2024 Energy Venture Day and Pitch Competition at CERAWeek on Wednesday, March 20. Forty-two companies, which have collectively raised over $265 million in investment funding already, pitched to judges. Nine startups won awards across three tracks.

TEX-E, a Texas nonprofit that supports student-founded upstarts, had five of its companies pitch and three winners walked away with monetary prizes. Teams that competed in the TEX-E Prize track, many of which come from Houston universities, include:

  • AirMax, University of Texas at Austin
  • BeadBlocker, University of Houston
  • Carvis Energy Solutions, Texas A&M University
  • Coflux Purification, Rice University
  • Solidec, Rice University

Solidec, which is working on a platform to produce chemicals from captured carbon, won first place and $25,000. The company also recently scored a $100,000 grant from Rice's One Small Step Grant program, as well as a voucher from the DOE. Coflux Purification, which has a technology that destroys PFAS in filtration, won second place and$15,000. The company also secured a One Small Step Grant to the tune of $80,000. AirMax, which focuses on optimizing sustainability for air conditioning equipment, won third place and $10,000.

Last year, Houston-based Helix Earth Technologies took home the top TEX-E price and $25,000 cash awards. The venture, founded by Rawand Rasheed and Brad Husick from Rice University, developed high-speed, high-efficiency filter systems derived from technology originating at NASA.

The rest of the companies that pitched competed for non-monetary awards. Here's what companies won:

  • Group A (CCUS, oilfield solutions, analytics and minerals):
    • First place: Ardent
    • Second place: Vaulted Deep
    • Third place: Mitico
  • Group B (batteries, renewables, water, and grid technology):
    • First place: SungreenH2
    • Second place: FeX Energy
    • Third place: Mercurius Biorefining
  • Group C (Mobility, Materials, and hydrogen solutions)
    • First place: Thiozen
    • Second place: Power2Hydrogen
    • Third place: Arolytics
  • People's choice: Decimetrix
HETI, Rice Alliance, and TEX-E celebrated the winners at a private reception on Wednesday evening.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News