Guest column

Houston experts: Amplifying startup success is key in the energy transition era

The future energy system will be made up of countless new technologies that are actively being developed and scaled by climate and energy startups around the world. Photo via Getty Images

The global energy landscape is undergoing unprecedented challenges, influenced by post-pandemic work trends, geopolitical events like the Ukraine crisis, and the urgent need to reduce carbon emissions.

To achieve net-zero goals by 2050 and address climate change, a significant investment of $5 trillion by 2030 to USD $4.5 trillion by 2050 is required, necessitating a rapid transformation in traditional energy production, distribution, storage, and consumption methods.

High-tech energy and climate startups are pivotal for a robust economy, driving innovation, economic growth, and enhanced productivity. These startups foster healthy competition, attract crucial investments, and contribute significantly to job creation, outpacing larger companies in terms of employment generation. The U.S., a startup leader, generated over 3.7 million new jobs in 2022, showcasing the adaptability of startups to market trends. Globally, India, with the third-largest startup ecosystem, has contributed to the creation of 860,000 jobs since the stand-up of Startup India, emphasizing the importance of nurturing startups for sustained economic dynamism and innovation.

The future energy system will be made up of countless new technologies that are actively being developed and scaled by climate and energy startups around the world. These founding teams require access to scaling resources to accelerate and amplify their impact. Human talent, financial investment, demonstration opportunities and physical facilities are scaling resources that often require significant time and capital to build from scratch. This inefficient resource deployment can be particularly pronounced for hard-tech entrepreneurs. Startup community participants are organized around providing entrepreneurs with the needed access to these resources.

"Our mission is to enable hydrogen adoption by solving the key challenges in hydrogen storage and transportation," says Ayrton CEO, Natasha Kostenuk. "With Halliburton's strategic engineering and manufacturing support, we can scale our technology, execute pilot demonstrations and accelerate towards commercialization."

Halliburton Labs, is highlighted for its diverse team and the support it provides to global entrepreneurs in sustainable ventures. The future energy system is envisioned to be composed of numerous new technologies developed and scaled by climate and energy startups worldwide. These startups require access to scaling resources mentioned above, where Halliburton Labs serves as a conduit between established practitioners and startup entrepreneurs, accelerating the latter's impact by providing access to these critical resources.

Infosys launched the Infosys Innovation Fund to invest in entrepreneurial ventures around the world. Their investment philosophy is geared toward supporting innovation and purposeful solutions that are relevant to the strategic priorities of their clients. This differentiates the Infosys Innovation Fund from most other venture capital institutions, in that they have a strong motivation to create long term value for the end users of the technology and to the companies building these solutions.

Infosys actively collaborates with emerging technology startups through its Infosys Innovation Fund. Employing a Desirability, Feasibility, Viability (DFV) framework, Infosys strategically selects startups and offers advantages such as market, financial and technical scale. The Infosys Innovation Fund stands out for its motivation to create long-term value for end users and the companies building innovative solutions. Infosys also operates an incubation center called ‘Infosys Center for Emerging Technology Solutions’ (iCETS), focusing on NextGen services and offerings through collaboration with clients, startup partnerships, university collaborations, and more.

Startups working with Infosys benefit from accessing the company's know-how, market knowledge, and strategic advisors from the consulting arm of business, Infosys Consulting, who are focused on creating business value through technology innovation. The combined expertise guides entrepreneurs from idea to qualification, proof-of-concept, prototype, minimum viable product (MVP), scale, and continuous discovery and delivery.

Open innovation and trusted partnerships in the energy transition era

In the energy transition era, open innovation and trusted partnerships are becoming essential components of amplifying success for startups. Collaborative cultures and trusted partnerships with companies like Infosys and Halliburton Labs are crucial for supporting and scaling startups in this rapidly evolving energy landscape. This shift towards ‘open innovation’ reflects a broader trend in the industry toward collaboration and shared expertise as key drivers for success to accelerate and achieve global energy transition aspirations.

___

Scott Gale is the executive director of Halliburton Labs. Jason Till is partner of Experience Transformation & Innovation at Infosys Consulting. Rima Thakkar is principal - Americas Energy Transition at Infosys Consulting. Laura Sacchi, Mandar Joshi, and Sonali Sakhare of Infosys Consulting contributed to this article.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News