ready to launch

Houston energy hardware startup scores opportunity to test tech in space

FluxWorks, based down the road in College Station, has received the opportunity to test its tech in collaboration with the ISS. Photo via fluxworks.co

A Houston-area startup and Greentown Houston member has secured a prestigious space prize.

College Station’s FluxWorks, which develops and commercializes non-contact magnetic gearboxes for use in extreme environments, was one of two startups to receive the Technology in Space Prize, which is funded by Boeing and the Center for the Advancement of Science in Space, or CASIS, manager of the International Space Station National Laboratory. Los Angeles-based Symphony Bio also received the honor.

Through the MassChallenge startup accelerator program, the two companies now get to utilize the research environment available through the ISS National Lab. CASIS and Boeing awarded Symphony Bio and FluxWorks more than $630,000 in total through the contest. Approximately $20 million has been awarded for more than 30 projects, which have already launched to the space station, since the event’s beginning.

"Boeing is excited to partner with CASIS to support the advancement of cutting-edge research using the unique environment of the orbiting laboratory,” says Scott Copeland, director for ISS research integration at Boeing, in a news release. “Enabling research that can help millions diagnosed with cancer and advancing mechanical innovations of non-contact magnetic gear technology will benefit human life in both the harsh environment of space and terrestrial environments.

"There are many smart people out there with great ideas who can leverage the space station to advance innovation, and these two companies serve as an inspiration to them all,” he continues.

FluxWorks, which won the 2023 Rice Business Plan Competition, will use the space station to test performance of a new gear. The magnetic gear will be tested to assess its startup behavior, dynamic operation, vibrational characteristics, and seal and bearing behavior in microgravity. Gearbox's goal is to reduce the mass of motors required in a variety of applications, but the lubricant needed to make them work is not designed for use in extreme environments, like space. Magnetic gears do not require lubricant, which makes them an alternative.

Symphony Bio will use the orbiting laboratory to develop a new cancer treatment that hopes to harness the immune system to fight tumors.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News