FluxWorks, based down the road in College Station, has received the opportunity to test its tech in collaboration with the ISS. Photo via fluxworks.co

A Houston-area startup and Greentown Houston member has secured a prestigious space prize.

College Station’s FluxWorks, which develops and commercializes non-contact magnetic gearboxes for use in extreme environments, was one of two startups to receive the Technology in Space Prize, which is funded by Boeing and the Center for the Advancement of Science in Space, or CASIS, manager of the International Space Station National Laboratory. Los Angeles-based Symphony Bio also received the honor.

Through the MassChallenge startup accelerator program, the two companies now get to utilize the research environment available through the ISS National Lab. CASIS and Boeing awarded Symphony Bio and FluxWorks more than $630,000 in total through the contest. Approximately $20 million has been awarded for more than 30 projects, which have already launched to the space station, since the event’s beginning.

"Boeing is excited to partner with CASIS to support the advancement of cutting-edge research using the unique environment of the orbiting laboratory,” says Scott Copeland, director for ISS research integration at Boeing, in a news release. “Enabling research that can help millions diagnosed with cancer and advancing mechanical innovations of non-contact magnetic gear technology will benefit human life in both the harsh environment of space and terrestrial environments.

"There are many smart people out there with great ideas who can leverage the space station to advance innovation, and these two companies serve as an inspiration to them all,” he continues.

FluxWorks, which won the 2023 Rice Business Plan Competition, will use the space station to test performance of a new gear. The magnetic gear will be tested to assess its startup behavior, dynamic operation, vibrational characteristics, and seal and bearing behavior in microgravity. Gearbox's goal is to reduce the mass of motors required in a variety of applications, but the lubricant needed to make them work is not designed for use in extreme environments, like space. Magnetic gears do not require lubricant, which makes them an alternative.

Symphony Bio will use the orbiting laboratory to develop a new cancer treatment that hopes to harness the immune system to fight tumors.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.