shaking structures

Fresh quakes damage parts of Texas area with long history of tremors caused by oil and gas industry

The recent quakes damaged homes, infrastructure, utility lines, and other property, weakening foundations and cracking walls and ceilings, officials said. Photo via Unsplash

Damaging earthquakes that rocked West Texas in recent days were likely caused by oil and gas activity in an area that has weathered tremors for decades, according to the U.S. Geological Survey.

A sequence that began in 2021 erupted with its largest quake on Friday, a magnitude 5.1 in the most active area in the country for quakes induced by oil and gas activities, experts say. The recent quakes damaged homes, infrastructure, utility lines, and other property, weakening foundations and cracking walls and ceilings, officials said.

No injuries have been reported, the city of Snyder Office of Emergency Management said on Facebook. Officials declared a disaster in Scurry County.

“Safety is our top priority for all of our residents, and so we wanted to make sure we had all the available resources at our hands if we needed them,” said Jay Callaway, emergency management coordinator for the city of Snyder and Scurry County, of the disaster declaration. He added that despite resident concerns, a disaster declaration doesn't mean they were anticipating a “big one.” He said they continued to have small tremors on Monday.

There have been more than 50 earthquakes with a magnitude of 3 or larger — the smallest quakes generally felt by people are magnitude 2.5 to 3 — in the yearslong sequence, said Robert Skoumal, a research geophysicist with the USGS, in an email. A sequence is generally a swarm of earthquakes in a particular region motivated by the same activities, he said.

While Friday's was the largest in the sequence, officials have also recorded a recent 4.5, a 4.9 on July 23 and a 4.7 last year. A water line broke in the city of Snyder due to a quake last week, said Callaway, but it has been fixed.

“This particular portion of the Permian Basin has a long history of earthquakes induced by oil and gas operations, going back to at least the 1970s,” said Skoumal.

The Permian Basin, which stretches from southeastern New Mexico and covers most of West Texas, is a large basin known for its rich deposits of petroleum, natural gas and potassium and is composed of more than 7,000 fields in West Texas. It is the most active area of induced earthquakes in the country and likely the world, according to the USGS. The are many ways people can cause, or induce, earthquakes, but the vast majority of induced earthquakes in the Central United States are caused by oil and gas operations, Skoumal said.

Earthquakes were first introduced to the area via water flooding, a process in which water is injected into the ground to increase production from oil reservoirs.

Four other tremors larger than a magnitude 5 have rattled western Texas in the past few years. The biggest was a 5.4. “All four of these earthquakes were induced by wastewater disposal,” said Skoumal.

Further analysis is needed to confirm the specific cause of the region’s earthquakes, but because the area isn’t naturally seismic and has a long history of induced earthquakes, “these recent earthquakes are likely to also have been induced by oil and gas operations,” said Skoumal.

Oklahoma experienced a dramatic spike in the number of earthquakes in the early 2010s that researchers linked to wastewater from oil and gas extraction that was being injected deep into the ground, activating ancient faults deep within the earth’s crust. The wastewater is left over from oil and natural gas production and includes saltwater, drilling fluids and other mineralized water.

The large increase in Oklahoma quakes more than a decade ago led state regulators to place restrictions on the disposal of wastewater, particularly in areas around the epicenter of quakes. Since then, the number of quakes began to decline dramatically.

Trending News

A View From HETI

Nada Ahmed. Courtesy photo

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Trending News