mover and shaker

Houston recycling company names new CEO

David Hudson has been named CEO of Elemental Recycling. Photo via LinkedIn

A Houston company that turns recycled plastics into high-purity graphene and hydrogen has named its new leader.

David Hudson has been named CEO of Elemental Recycling. The company, founded in 2019, is an investment of Freestone, a portfolio company of Tailwater Capital. He succeeds Tom Samuels, former CEO and board chair of the company.

"With over two decades of proven expertise in driving strategic growth and profitability across the recycling, waste management, sustainability, and decarbonization sectors, David brings a wealth of experience that makes him the ideal leader to take the reins and guide Elemental into its next phase of innovation and growth," Samuels says in a news release. "I am excited about the possibilities that lie ahead for the company under David's leadership. His proven track record and passion for driving positive change make him the perfect steward for the next chapter of Elemental's journey."

Hudson has over 20 years of experience within sustainability across industries. He founded and led Circulus Holdings, a company that turned post-consumer plastics into resins for commercial and industrial use. In that role, he raised almost half a billion dollars in investments, per the news release. He also held leadership roles at Ara Partners, Avangard Innovative, Recology, and Strategic Materials.

"I am grateful for the opportunity to join this exceptional team and contribute to the continued success of Elemental," Hudson says in the release. "Tom's leadership, along with the vision of founders Ron Presswood and Ian Bishop, has positioned the company to become a driving force in the recycling, sustainability, decarbonization, and advanced materials sectors.

"Elemental boasts an exceptional team, and I am eager to collaborate with each member as we navigate the path ahead," he continues. "I am confident that, together, we will grow the Company into a major player in the graphene and hydrogen production spaces and continue to advance Elemental's mission of sustainability."

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News