shine on

Global real estate manager to tap into solar energy to power Houston portfolio

Brookfield Properties announced plans to power its Houston properties with solar energy by 2026. Photo via

Commercial real estate manager Brookfield Properties, a major office landlord in Houston, is plugging into solar energy to power its local portfolio.

The New York City-based company plans to rely on a new-build solar power plant to supply all of the electricity for its 10.3 million-square-foot, 10-building office portfolio in the Houston area. Brookfield’s key properties here include:

  • The 3.1 million-square-foot Allen Center complex
  • The more than 1.1 million-square-foot Heritage Plaza
  • The 1.1 million-square-foot 1600 Smith Street tower
  • The nearly 850,000-square foot TotalEnergies Tower

Laura Montross, vice president of communications for Brookfield Properties, tells Realty News Report that the solar power plant will be operating by 2026.

Each year, the company’s Houston portfolio uses about 90,000 megawatt-hours of electricity, “which is unlikely to take up the total capacity of a new solar power plant,” she says, “so the excess capacity will be available to other buyers or the utility grid operator for purchase.”

Montross says Brookfield is in talks with several developers of solar power plants about the Houston project, but neither a site nor a contractor has been chosen yet.

Brookfield announced June 28 that its entire U.S. office portfolio will run on zero-emissions electricity by 2026. The switch is expected to reduce carbon emissions within the more than 70-million-square-foot portfolio by about 80 percent.

“Instead of taking incremental steps or waiting for others to act, we are completely transforming how we power office buildings throughout the United States,” Ben Brown, managing partner of Brookfield Real Estate, says in a news release.

Brookfield Properties says electricity for the nationwide office portfolio will come from four sources: hydropower (49 percent), solar and wind power (33 percent), and nuclear power (18 percent). Outside Houston, the company maintains a large office presence in the New York City, Los Angeles, Denver, and Washington, D.C. markets.

“Not only will [this strategy] significantly advance our goal of transitioning our entire portfolio to net zero carbon,” Brown says, “but also we are confident that both the increased demand for zero-emissions electricity it will create and the industry precedence it will set will be a game-changer for how state-of-the-art office buildings are powered throughout the country.”

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News