Q&A

Energy transition in Houston is going to 'take time and be hard'

Wogbe Ofori, founder and chief strategist of WRX Companies, joins the Houston Innovators Podcast to discuss hardtech and Houston as an energy transition city. Photo via LinkedIn

The energy transition has momentum, according to Wogbe Ofori. But there's still a ways to go.

Ofori, the founder and chief strategist of WRX Companies, is an adviser to Nauticus Robotics and strategist to Intuitive Machines and Jacobs, he's also served as a mentor across the local innovation community. He's narrowed in on hardtech and has has gotten a front-row seat to observing what's happening in Houston amid the energy transition, as he explains on this week's episode of the Houston Innovators Podcast.

Listen to the episode and read an excerpt below.

EnergyCapital: Looking back on some of the recent trends of the energy transition, what have you observed?

Wogbe Ofori: The energy transition has been something that — through the last hype cycle that started in the second half of 2020 and lasted until the first quarter of 2022 — was part of that momentum along with Web3. Now, the energy transition is continued as Web3 has fallen off a cliff and now been replaced by AI, but the energy transition is continued. Where I think moving into the next major stage where now it’s time for them to actually be proven out. And these things are hard and take time to be proven out and these technologies to mature. Then for the products and services that are derived from them, to really find the right place within the market and the right use cases. The idea that there is some sort of silver bullet — whether it be hydrogen or something else — that's going to solve the problem for all use cases is completely unrealistic. The issue is that a lot of folks especially the big energy players — the O&G majors here — they know that.

EC: So, what does this next stage look like?

WO: Now we're moving into what I think is a really interesting period where it's going to be, “well do we really have the legs for this race?” Because we sprinted, and everybody got really excited. Now you starting to hear, “well you know some investors are a little worried that cleantech 2.0 might suffer some of the same fate as cleantech 1.0.” How do we avoid that? Will investors have the patience to continue to make investments into energy transition plays for the longer term, because we’re going to need that to make these transitions. It's not going to happen overnight.

EC: Where does Houston come in on all this?

WO: Well the other big question that’s being asked around is, “Can Houston actually lead this?” It's difficult for an incumbent to disrupt itself. We’ve been positioning ourselves as moving from the energy capital of the world to the energy transition capital. I'm all for it, and I'm 100 percent behind it. Now we are just at the place where we're really going to start to see the difference between those who were caught up in the excitement of the energy transition, and those who really have the faith to see this thing through. The ones who do have the faith to see this through are going to create some fantastic companies that are going to create real value and that will materially change the way we live. But it’s going to take time and be hard.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News