Houston is playing host to a ton of energy and climate-focused events next month. Photo courtesy of the Ion

Two separate weeks of climate and energy-focused weeks are organizing events and programming during the second week of September — here's what all to consider attending.

Find out more information about each week online:

Kickoff events

Both groups will host kickoff events on Monday, September 9:

  • Houston Energy and Climate Week's morning opening ceremonies at the University of Houston begins at 7 am with a breakfast and, following a handful of panels and keynotes, will conclude at 1 pm after a luncheon. More details.
  • The Ion is hosting Houston Energy and Climate Startup Week's kickoff panel and block party, which begins at 3:30 pm and concludes at 8 pm. More details.

Prime networking

Attending just to make the right connections — perhaps over a beverage or two? Here's where to do it.

Oxy, which broke ground on its DAC project Stratos earlier this year, has secured a $550 million commitment from a financial partner. Photo via 1pointfive.com

Oxy subsidiary gets $550M boost to form new CCUS joint venture

howdy, partner

Occidental Petroleum’s direct air capture (DAC) initiative just got a more than half-a-billion-dollar investment from Blackrock, the world’s largest asset management company.

Houston-based Occidental announced November 7 that on behalf of its investment clients, BlackRock has agreed to pump $550 million into the DAC facility, called Stratos, that Oxy is building in the Midland-Odessa area. The investment will be carried out through a joint venture between BlackRock and Oxy subsidiary 1PointFive, which specializes in carbon capture, utilization, and sequestration (CCUS).

A groundbreaking ceremony for Stratos — being billed as the world’s largest DAC operation — was held in April 2023. Construction is scheduled to be completed in mid-2025. The facility is expected to capture up to 500,000 metric tons of carbon dioxide each year.

Among the organizations that have agreed to buy carbon removal credits from 1Point5 are Amazon, Airbus, All Nippon Airways, TD Bank, the Houston Astros, and the Houston Texans.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Vicki Hollub, president and CEO of Oxy, says the joint venture with BlackRock demonstrates that DAC is “becoming an investable technology.”

“We believe that BlackRock’s expertise across global markets and industries makes them the ideal partner to help further industrial-scale [DAC],” she says.

DAC removes CO2 from the atmosphere then stores it in underground geological formations.

“Occidental’s technical expertise brings unprecedented scale to this cutting-edge decarbonization technology,” says Larry Fink, chairman and CEO of BlackRock.

He adds that Stratos “represents an incredible investment opportunity for BlackRock’s clients to invest in this unique energy infrastructure project and underscores the critical role of American energy companies in climate technology innovation.”

Occidental subsidiary 1PointFive received federal funding to go toward building the South Texas Direct Air Capture Hub. Photo via 1pointfive.com

Houston-based Oxy subsidiary receives $600M in federal funding for carbon capture project

fed funds

A subsidiary of Houston-based energy company Occidental has snagged a roughly $600 million federal grant to establish a hub south of Corpus Christi that’ll remove carbon emissions from the air.

The U.S. Department of Energy’s Office of Clean Energy Demonstrations grant, awarded to Occidental subsidiary 1PointFive, will go toward building the South Texas Direct Air Capture (DAC) Hub. It’ll be located on about 106,000 leased acres within a Kleberg County site at the iconic King Ranch. The hub will comprise 30 individual DAC projects.

In a news release, Occidental says the facility will be able to pull at least 1 million metric tons of carbon from the air each year. The hub eventually might remove and store up to 30 million metric tons of CO2 per year, the company says.

The hub initially will create about 2,500 jobs in construction, operations, and maintenance, says Occidental.

Direct air capture removes CO2 from the atmosphere at any location, according to the International Energy Agency. That’s opposed to carbon capture, which generally happens where CO2 is emitted. Either way, the carbon is stored in deep geological formations and used for a variety of purposes, such as making concrete.

In the case of the South Texas hub, carbon dioxide that’s captured and stored will come from industrial sites along the Texas Gulf Coast.

Occidental President and CEO Vicki Hollub says the grant from the U.S. Department of Energy “validates our readiness, technical maturity, and the ability to use Oxy’s expertise in large projects and carbon management to move the technology forward so it can reach its full potential.”

Oxy’s partners in the South Texas project include:

  • Canada-based clean energy company Carbon Engineering
  • Australia-based professional services provider Worley
  • DOE’s Lawrence Livermore National Laboratory in Northern California
  • Livermore Lab Foundation
  • Texas A&M University-Kingsville
  • Coastal Bend Bays & Estuaries Program in Corpus Christi
  • University of Texas at Austin Gulf Coast Carbon Center

The South Texas DAC Hub was one of two DAC projects awarded as much as $1.2 billion in funding August 11 by the Department of Energy (DOE). The other project is Project Cypress, located in Louisiana’s Calcasieu Parish; it received up to $603 million in funding.

In announcing the DAC funding, U.S. Energy Secretary Jennifer Granholm says her agency “is laying the foundation for a direct air capture industry crucial to tackling climate change — transforming local economies and delivering healthier communities along the way.”

The DOE says the Texas and Louisiana projects represent the world’s largest-ever investment in engineered carbon removal. They’re two of the four regional projects that the DOE plans to finance as part of its DAC initiative, supported by $3.5 billion in federal funding aimed at capturing and storing pollution from carbon dioxide.

Just 18 DAC facilities are currently operating across the U.S., Canada, and Europe, according to a 2022 report from the International Energy Agency.

“No matter how fast we decarbonize the nation’s economy, we must tackle the legacy pollution already in our atmosphere to avoid the worst effects of climate change,” Granholm said in 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31M in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards.

See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.