Houston is playing host to a ton of energy and climate-focused events next month. Photo courtesy of the Ion

Two separate weeks of climate and energy-focused weeks are organizing events and programming during the second week of September — here's what all to consider attending.

Find out more information about each week online:

Kickoff events

Both groups will host kickoff events on Monday, September 9:

  • Houston Energy and Climate Week's morning opening ceremonies at the University of Houston begins at 7 am with a breakfast and, following a handful of panels and keynotes, will conclude at 1 pm after a luncheon. More details.
  • The Ion is hosting Houston Energy and Climate Startup Week's kickoff panel and block party, which begins at 3:30 pm and concludes at 8 pm. More details.

Prime networking

Attending just to make the right connections — perhaps over a beverage or two? Here's where to do it.

Oxy, which broke ground on its DAC project Stratos earlier this year, has secured a $550 million commitment from a financial partner. Photo via 1pointfive.com

Oxy subsidiary gets $550M boost to form new CCUS joint venture

howdy, partner

Occidental Petroleum’s direct air capture (DAC) initiative just got a more than half-a-billion-dollar investment from Blackrock, the world’s largest asset management company.

Houston-based Occidental announced November 7 that on behalf of its investment clients, BlackRock has agreed to pump $550 million into the DAC facility, called Stratos, that Oxy is building in the Midland-Odessa area. The investment will be carried out through a joint venture between BlackRock and Oxy subsidiary 1PointFive, which specializes in carbon capture, utilization, and sequestration (CCUS).

A groundbreaking ceremony for Stratos — being billed as the world’s largest DAC operation — was held in April 2023. Construction is scheduled to be completed in mid-2025. The facility is expected to capture up to 500,000 metric tons of carbon dioxide each year.

Among the organizations that have agreed to buy carbon removal credits from 1Point5 are Amazon, Airbus, All Nippon Airways, TD Bank, the Houston Astros, and the Houston Texans.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Vicki Hollub, president and CEO of Oxy, says the joint venture with BlackRock demonstrates that DAC is “becoming an investable technology.”

“We believe that BlackRock’s expertise across global markets and industries makes them the ideal partner to help further industrial-scale [DAC],” she says.

DAC removes CO2 from the atmosphere then stores it in underground geological formations.

“Occidental’s technical expertise brings unprecedented scale to this cutting-edge decarbonization technology,” says Larry Fink, chairman and CEO of BlackRock.

He adds that Stratos “represents an incredible investment opportunity for BlackRock’s clients to invest in this unique energy infrastructure project and underscores the critical role of American energy companies in climate technology innovation.”

Occidental subsidiary 1PointFive received federal funding to go toward building the South Texas Direct Air Capture Hub. Photo via 1pointfive.com

Houston-based Oxy subsidiary receives $600M in federal funding for carbon capture project

fed funds

A subsidiary of Houston-based energy company Occidental has snagged a roughly $600 million federal grant to establish a hub south of Corpus Christi that’ll remove carbon emissions from the air.

The U.S. Department of Energy’s Office of Clean Energy Demonstrations grant, awarded to Occidental subsidiary 1PointFive, will go toward building the South Texas Direct Air Capture (DAC) Hub. It’ll be located on about 106,000 leased acres within a Kleberg County site at the iconic King Ranch. The hub will comprise 30 individual DAC projects.

In a news release, Occidental says the facility will be able to pull at least 1 million metric tons of carbon from the air each year. The hub eventually might remove and store up to 30 million metric tons of CO2 per year, the company says.

The hub initially will create about 2,500 jobs in construction, operations, and maintenance, says Occidental.

Direct air capture removes CO2 from the atmosphere at any location, according to the International Energy Agency. That’s opposed to carbon capture, which generally happens where CO2 is emitted. Either way, the carbon is stored in deep geological formations and used for a variety of purposes, such as making concrete.

In the case of the South Texas hub, carbon dioxide that’s captured and stored will come from industrial sites along the Texas Gulf Coast.

Occidental President and CEO Vicki Hollub says the grant from the U.S. Department of Energy “validates our readiness, technical maturity, and the ability to use Oxy’s expertise in large projects and carbon management to move the technology forward so it can reach its full potential.”

Oxy’s partners in the South Texas project include:

  • Canada-based clean energy company Carbon Engineering
  • Australia-based professional services provider Worley
  • DOE’s Lawrence Livermore National Laboratory in Northern California
  • Livermore Lab Foundation
  • Texas A&M University-Kingsville
  • Coastal Bend Bays & Estuaries Program in Corpus Christi
  • University of Texas at Austin Gulf Coast Carbon Center

The South Texas DAC Hub was one of two DAC projects awarded as much as $1.2 billion in funding August 11 by the Department of Energy (DOE). The other project is Project Cypress, located in Louisiana’s Calcasieu Parish; it received up to $603 million in funding.

In announcing the DAC funding, U.S. Energy Secretary Jennifer Granholm says her agency “is laying the foundation for a direct air capture industry crucial to tackling climate change — transforming local economies and delivering healthier communities along the way.”

The DOE says the Texas and Louisiana projects represent the world’s largest-ever investment in engineered carbon removal. They’re two of the four regional projects that the DOE plans to finance as part of its DAC initiative, supported by $3.5 billion in federal funding aimed at capturing and storing pollution from carbon dioxide.

Just 18 DAC facilities are currently operating across the U.S., Canada, and Europe, according to a 2022 report from the International Energy Agency.

“No matter how fast we decarbonize the nation’s economy, we must tackle the legacy pollution already in our atmosphere to avoid the worst effects of climate change,” Granholm said in 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

future of batteries

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”