Fervo Energy claimed a top 10 spot on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. Photo via Getty Images.

The accolades keep rolling in for Houston-based Fervo Energy, a producer of geothermal power.

Fervo lands at No. 6 on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. The ranking recognizes sustainability-focused companies based on factors such as impact, financial strength, and innovation.

Time notes that Fervo broke ground in 2023 in Utah on what the company claims will be the world’s largest geothermal plant. The plant is scheduled to start supplying carbon-free electricity to the grid next year and to reach its 400-megawatt capacity in three years.

“Technologies like this only make a difference if we deploy them at large-scale in a way that can reduce carbon emissions and increase the reliability of the grid,” Fervo CEO Tim Latimer told Time in 2023.

The startup was named North American Company of the Year by research and consulting firm Cleantech Group for 2025. Fervo topped the Global Cleantech 100, Cleantech Group’s annual list of the world’s most innovative and promising cleantech companies.

Last year, Fervo also made Time’s list of the 200 Best Inventions of 2024. Fervo was recognized in the green energy category for its FervoFlex geothermal power system.

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. The startup’s valuation is estimated at $1.4 billion. According to PitchBook data, the company raised $634 million in the fourth quarter of 2024.

In all, eight Houston-area companies appear among the top 250 greentech companies ranked by Time and Statista. Other than Fervo, they are:

  • No. 43 Lancium Technologies, an energy storage and distribution company
  • No. 50 Solugen, a producer of sustainable chemicals.
  • No. 56 Quaise Energy, which specializes in terawatt-scale geothermal power.
  • No. 129 Plus Power, a developer, owner and operator of battery storage projects.
  • No. 218 Dream Harvest, which promotes sustainable vertical farming.
  • No. 225 Cemvita, which uses synthetic biology to convert carbon emissions into bio-based chemicals.
  • No. 226 Syzygy Plasmonics, which decarbonizes chemical production.
Vermont-based BETA Technologies claimed the No. 1 spot. The company manufactures electric aircraft.
Fervo Energy has been named North American Company of the Year, and two other Houston companies made the Global Cleantech 100 list. Photo via fervoenergy.com

Houston unicorn startup named North American Company of the Year by cleantech firm

top honor

Houston-based geothermal energy startup Fervo Energy has been named North American Company of the Year by research and consulting firm Cleantech Group.

Fervo appears on this year’s Global Cleantech 100, Cleantech Group’s annual list of the world’s most innovative and promising cleantech companies

Houston companies Syzygy Plasmonics and Vaulted Deep also made the Global Cleantech 100 list this year.

“These innovators give us reasons to be optimistic about the future. Their groundbreaking work demonstrates that progress toward net zero remains possible and inspires us to double down on the challenge of addressing climate change,” says Richard Youngman, CEO of Cleantech Group.

Fervo was honored during a Jan. 27 awards dinner at Cleantech Forum North America, an event hosted by Cleantech Group. Co-founder and CEO Tim Latimer accepted the North American Company of the Year award on behalf of Fervo.

“We have always been honored to be part of the Global Cleantech 100,” Latimer says in a LinkedIn post. “Being recognized for the fourth consecutive year and named the ‘North American Company of the Year’ is a testament to our relentless pursuit of innovation in the energy sector. The demand for clean, firm power has never been more urgent, and we are proud to lead the way.”

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company has surpassed $1 billion. The startup’s valuation is estimated at $1.4 billion. According to PitchBook data, the company raised $634 million in VC funding in Q4. Read more here.

The deal brings Fervo's total funding secured this year to around $600 million. Photo courtesy of Fervo

Houston-based Fervo Energy collects $255M in additional funding

cha-ching

A Houston company that's responding to rising energy demand by harnessing geothermal energy through its technology has again secured millions in funding. The deal brings Fervo's total funding secured this year to around $600 million.

Fervo Energy announced that it has raised $255 million in new funding and capital availability. The $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II with participating investors including Breakthrough Energy Ventures, CalSTRS, Congruent Ventures, CPP Investments, DCVC, Devon Energy, Galvanize Climate Solutions, Liberty Mutual Investments, Mercuria, and Sabanci Climate Ventures.

The funding will go toward supporting Fervo's ongoing and future geothermal projects.

“The demand for 24/7 carbon-free energy is at an all-time high, and Fervo is one of the only companies building large projects that will come online before the end of the decade,” Fervo CEO and Co-Founder Tim Latimer says in a news release. “Investors recognize that Fervo’s ability to get to scale quickly is vital in an evolving market that is seeing unprecedented energy demand from AI and other sources.”

Additionally, Fervo secured a $120 million letter of credit and term loan facility from Mercuria, an independent energy and commodity group that previously invested in the company.

“In surveying power markets across the U.S. today, the need for next-generation geothermal is undeniable,” Brian Falik, group chief investment officer of Mercuria, adds. “We believe in Fervo not just because their EGS approach is cost-effective, commercially viable, and already being deployed at scale, but because they set ambitious targets and consistently deliver.”

In February, Fervo secured $244 million in a financing round led by Devon Energy, and in September, the company received a $100 million bridge loan for the first phase of its ongoing project in Utah. This project, known as Project Cape, represents a 100x growth opportunity for Fervo, as Latimer explained to InnovationMap earlier this year. As of now, Project Cape is fully permitted up to 2 GW and will begin generating electricity in 2026, per the company.

Other wins for Fervo this year include moving into its new headquarters in downtown Houston, securing a power purchase agreement with California, growing its partnership with Google, and being named amongst the year's top inventions by Time magazine.


———

This article originally ran on InnovationMap.

These three Houston innovators have been recognized by Time Magazine. Photos courtesy

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Tim Latimer, CEO and co-founder of Fervo Energy, has been named to the TIME100 Next. Photo courtesy of Fervo Energy

Houston clean energy founder scores spot on Time's list of most influential leaders

what a coincidence

What do pop star Sabrina Carpenter and Houston geothermal energy founder Tim Latimer have in common? In addition to their successful summers in their respective industries, they both also were named influential leaders on the TIME100 Next list for 2024.

For the fifth year, Time magazine released the annual list that was established to honor influential leaders "who are not waiting long in life to make an impact," reads the announcement article, continuing, "TIME100 Next has no age requirements; its aim is to recognize that influence does not have them either, nor does leadership look like it once did."

Representing Houston, Latimer was selected for his work in geothermal energy innovation. His company, Fervo Energy, has reached numerous milestones over its seven years of existence, garnering partnerships with the likes of Google and Devon Energy and raising an estimated $531 million in venture capital investment. Last month, the company announced it received a $100 million bridge loan from an affiliate of Irvington, New York-based X-Caliber Rural Capital for the first phase of its ongoing Cape Station project, which is being touted as the world’s largest geothermal energy plant.

"At a time when emission reductions are vital, energy demand has surged to a record high as a boom in AI and data centers pushes our nation’s grid to the brink," writes Tom Steyer, co–­executive chair of Galvanize Climate Solutions, which invests in Fervo Energy, in a Time article. "Leveraging multiple forms of renewable energy will be critical to meeting this demand and advancing the climate transition.

"One such solution is geothermal, which could eliminate close to 800 megatonnes of emissions annually by 2050," he continues. "Latimer uses fracking technology to supercharge the output of geothermal wells. Last year, in collaboration with Google, his startup piloted a first-of-its-kind commercial-­scale power plant, and in November, the Nevada plant (Project Red) began pumping electricity into Google data centers. Getting juice to the grid is a key milestone for energy startups—and one many never reach."

In an interview with InnovationMap for the Houston Innovators Podcast, Latimer reported that Fervo is growing and scaling at around a 100x pace. While Fervo's first project, Project Red, included three wells, Project Cape, a Southwest Utah site, will include around 100 wells with significantly reduced drilling cost and an estimated 2026 delivery. Latimer says there are a dozen other projects like Project Cape that are in the works.

"It's a huge ramp up in our drilling, construction, and powerplant programs from our pilot project, but we've already had tremendous success there," Latimer says of Project Cape. "We think our technology has a really bright future."

While Latimer looks ahead to the rapid growth of Fervo Energy, he says it's all due to the foundation he put in place for the company, which has a culture built on the motto, "Build things that last."

“You’re not going to get somewhere that really changes the world by cutting corners and taking short steps. And, if you want to move the needle on something as complicated as the global energy system that has been built up over hundreds of years with trillions of dollars of capital invested in it – you’re not going to do it overnight," he says on the show. "We’re all in this for the long haul together."


Fervo Energy received $100 million loan for its Utah Cape Station project. Photo via fervoenergy.com

Houston company secures $100M for 'world’s largest geothermal energy plant'

loan guarenteed

Houston-based geothermal energy company Fervo Energy has secured a $100 million bridge loan for the first phase of its ongoing project in Utah.

The loan came from an affiliate of Irvington, New York-based X-Caliber Rural Capital. Proceeds will support construction of Fervo’s Cape Station project, which is being touted as the world’s largest geothermal energy plant.

The first phase of Cape Station, which is on track to generate 90 megawatts of renewable energy, is expected to be completed in June 2026. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

“Helping this significant project advance and grow in rural America is a true testament to how investing in communities and businesses not only has local influence, but can have a global, long-lasting impact by promoting sustainability and stimulating rural economies,” Jordan Blanchard, co-founder of X-Caliber Rural Capital, says in a news release.

X-Caliber Rural Capital is an affiliate of commercial real estate financing company X-Caliber Capital Holdings.

Fervo says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system.

Tim Latimer, co-founder and CEO of Fervo, says his company’s drilling advancements, purchase deals, transmission rights, permit approvals, and equipment acquisitions make Fervo “an ideal candidate” for debt financing. In May, Latimer joined the Houston Innovators Podcast to discuss the company's growth and latest project.

With a new office in downtown Houston, Fervo recently signed up one of the country’s largest utilities as a new customer and expanded its collaboration with Google.

To date, Fervo has raised $531 million in venture capital funding, per Crunchbase data.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.