Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill.

What Makes Dsider Unique?

Dsider offers more than just financial modeling—it creates actionable insights, tailored to the demands of the clean energy sector. At its core, the platform integrates TEA with operational planning, equipping founders with the ability to run scenario analyses, optimize pricing strategies, and anticipate market challenges. “It’s not just about building a product—it’s about understanding how to make that product thrive in a dynamic, ever-evolving market,” Kumar explained.

In industries where data is limited and stakes are high, startups often struggle to translate early pilots into scalable solutions. Kumar emphasized how Dsider’s approach helps founders forecast regulatory shifts, project downtime risks, and identify key economic drivers—turning complex calculations into a clear strategic roadmap. This foresight enables startups to align with customer expectations and investor requirements from the outset, a step that is often overlooked in early development stages.

Why TEA is Critical for Founders

“Clean tech innovation is hard,” Kumar emphasized, “because there is no historical data to guide decisions.” Startups often operate in unfamiliar territory, where understanding market fit and pricing models is essential. Through TEA, founders can build a financial narrative, simulate real-world conditions, and show investors or customers how their solutions will perform.

Jason, an experienced founder, echoed this sentiment, reflecting on his own mistakes:

"I wish I’d done a TEA earlier—during my first pilot, we didn’t budget for enough support, and it cost us a key customer."

The takeaway? Even at the pilot stage, TEA is invaluable. As Kumar noted, failing early pilots can prevent startups from scaling—making upfront analysis essential for success.

Beyond Technology: Bridging Gaps Between Founders, Investors, and Customers

Kumar highlighted the need to align founders, investors, and customers through a shared understanding of value. TEA enables this by allowing founders to communicate in the same language as their stakeholders—from efficiency gains to regulatory compliance. Dsider's platform provides tools for scenario modeling, allowing startups to optimize for both technology performance and economic outcomes.

One challenge, she noted, is that many founders are scientists without financial backgrounds. “Our goal is to simplify that complexity, so founders can focus on their technology while we take care of the analysis,” Kumar explained. Dsider helps startups anticipate questions from investors, simulate risks, and optimize business models from the start.

A New Way to Sell: Using TEA as a Business Development Tool

Kumar described how TEA can be more than a financial tool—it can become a business development asset. Founders can use Dsider to create customized reports for potential customers, demonstrating the specific value their technology brings. With interactive models and scenario analysis, startups can quickly respond to customer needs and build trust through transparency.

Future Growth

Looking ahead, Dsider aims to scale its operations and expand its impact by continuing to support early-stage founders with affordable, high-impact tools. With growing regulatory support for clean tech and an increasing demand for sustainable solutions, Dsider is positioned to become a key player in the energy tech startup ecosystem.

By bridging the gap between innovation and economics, Dsider is helping founders navigate complex challenges and build businesses that are both profitable and impactful—setting a strong foundation for future growth in the climate tech space.

Listen to the full episode with Sujatha Kumar on the Energy Tech Startups Podcast here.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

Houston's top energy transition founders explain their biggest challenges

overheard

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Houston's airports are looking more and more green. Photo via fly2houston.org

Houston airports land $12.5M for green projects, announce new EV fleet

seeing green

Houston Airports will receive funding from The Federal Aviation Administration in the next few months on projects aimed at reducing greenhouse gas emissions and implementing the administration's climate challenge guidance at its hubs.

The funds — about $12.5 million — come from the FAA's FY2022 Airport Improvement Program Supplemental Discretionary Grant Competition and are slated to be rolled-out by September 2024. Projects at George Bush Intercontinental and Hobby airports were among 79 projects around the country, which the FAA granted about $268 million to in total.

“Houston Airports is committed to reducing our environmental impact while also protecting the planet as we expand our global reach. These FAA grants fund our ability to invest in smart and sustainable solutions” Jim Szczesniak, COO for Houston Airports, said in a statement. “The end result of these projects will be a more resilient, efficient and sustainable airport system that aligns with the goal of Houston Airports to achieve carbon neutrality by 2030.”

IAH received $10.3 million for two projects that will replace existing generators and fund an energy audit to find energy and water use efficiencies at the airport, as well as "define actionable steps to reduce greenhouse gas emissions across the airfield and the airport's buildings," according to the statement.

Hobby received $2.1 million to also go towards an energy audit and to create a Resiliency Master Plan to help mitigate the impacts of climate change, severe weather and floods in a sustainable way.

Separate from the FAA funds, Houston airports also announced in recent weeks that it will add an all-electric fleet of vehicles for its six airport locations by the end of 2023.

According to a release from HAS, ground operations are a major source of the aviation industry's carbon footprint.

The fleet will include 25 Ford F-150 Lightnings, which can travel up to 320 miles on a full charge. HAS's maintenance team planned to install 11 Level 2 charging stations to support the fleet at its airports this summer.

These updates are all part of HAS's Sustainable Management Plan, which aims to get the system to carbon neutrality by 2030.

Earlier this year, Hertz Electrifies Houston, in partnership with bp pulse, announced that it would install a new EV fast-charging hub to Hobby Airport that's designed to serve ride-hail, taxi fleets and the general public. The initiative, which was formed by The Hertz Corp. and the City of Houston, also aimed to bring 2,100 rental electric vehicles to Houston.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron and partners to develop innovative power plants to support AI-focused data centers

power partners

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.