As emerging technology continues to grow electricity load demand, Cloverleaf has identified an opportunity to develop large-scale digital infrastructure sites powered by low-carbon electricity. Photo via Getty Images

Houston energy executives have started a new company dedicated to developing clean-powered infrastructure for the large electric loads.

Cloverleaf Infrastructure, dually headquartered in Houston and Seattle, Washington, announced its launch and $300 million raised from NGP and Sandbrook Capital, two private equity firms. The company's management team also invested in the company.

As emerging technology continues to grow electricity load demand, Cloverleaf has identified an opportunity to develop large-scale digital infrastructure sites powered by low-carbon electricity.

"The rapid growth in demand for electricity to power cloud computing and artificial intelligence poses a major climate risk if fueled by high-emission fossil fuels," David Berry, Cloverleaf's CEO, says in a news release. "However, it's also a major opportunity to catalyze the modernization of the US grid and the transition to a smarter and more sustainable electricity system through a novel approach to development.

"Cloverleaf is committed to making this vision a reality with the support of leading climate investors like Sandbrook and NGP."

Berry, who's based in Houston, previously co-founded and served as CFO at ConnectGen and Clean Line Energy Partners, clean energy and transmission developers. Last year, he co-founded Cloverleaf with Seattle-based Brian Janous and CTO Jonathan Abebe, who most recently held a senior role at the United States Department of Energy. Nur Bernhardt, director of Energy Strategy at Microsoft who's also based in Seattle, rounds out the executive team as vice president.

"The large tech companies have become dominant players in the electricity sector, and they are genuinely determined to power their growth with the lowest possible emissions," Janous, who serves as chief commercial officer, says in the release. "Achieving this objective doesn't depend on disruptive new technologies as much as it does on dedicated teams working hand in hand with utility partners to maximize the use of the clean generation, storage, and other technologies we already have."

Cloverleaf will work with regional U.S. utilities and data center operators to provide clean electricity at scale through strategic investments in transmission, grid interconnection, land, onsite power generation, and electricity storage, per the release.

"The sustainable development of digital infrastructure at scale is fundamentally a technical power problem," Alfredo Marti, partner at Sandbrook, adds. "We have witnessed members of the Cloverleaf team effectively address this challenge for many years through a blend of creativity, specialized engineering, a partnership mindset, and astute capital deployment."

Students from the 2023 cohort of The Energy Project showcased their innovations at the Puranik Foundation Lotus Innovation Awards. Photo courtesy of Jacob Power Photography

Sustainability-focused philanthropy recognizes student innovations, local leaders

EMPOWERING THE TRANSITION

From the moment of arrival at the Puranik Foundation Lotus Innovation Awards, attendees engaged in an experience that stimulated the senses and excited the mind – a precise reflection of the foundation’s approach to a holistic education for future innovators.

The event, held last week at the Post Oak Hotel in Uptown, honored Houston leaders supporting the next generation of aspiring entrepreneurs and celebrated the dedication of high school students dreaming sustainability solutions into reality.

“[These students] have the potential to reach innovative places that none of us can think of because we are so set in our ways,“ says Bhakti Puranik, executive director of Puranik Foundation, just steps from where the students showcased their prototypes to secure the gala’s Fan Favorite award. “They are open-minded and creative and constantly inspired by the community that surrounds us.”

The Energy Project, launched in 2020 by the foundation, supports young minds tackling environmental challenges for sustainable development across five sectors: alternative power generation, sustainable consumption, waste management, urban design, and water sustainability.

Multiple small student teams from across the country met for design thinking lessons before creating prototypes of their own solutions at TXRX Labs. The foundation’s primary sponsor, Worldwide Oilfield Machine, provided mentors and resources to the 25 students in this year’s cohort alongside Rice University.

For the winning team, Refoam Maine, the application of mushroom mycelium in lieu of plastic for floating buoys came from the optimistic minds of Maggie Blood, Olivia Huard, Tula Bradley Prindiville, and Laura Riordan, students of Camden Hills Regional High School near Rockport, Maine.

A close-knit community, Camden Hills has collectively seen thousands of orphaned buoys pile up against their docks and beaches for years. The team plans to use their Lotus Innovation Award grant of $15,000 to get their floats in the water, and is actively working with boatyards, aquaculture farmers, and others to bring that vision to reality this summer.

Cyrus Golshan, Nathaniel Lemon, and Alexander Kristof took home the Fan Favorite Award for their solution Piezot, which harnesses energy from revolutionary piezoelectric tiles that convert pressure into energy and electricity.

The team studies at the Energy Institute High School in Houston and envisions an energy ecosystem that doesn’t rely so heavily on natural forces, but rather on human movement as a means to generate power. Placement of the tiles in high-traffic areas like airports, schools, and shopping centers could mean an exponential growth in power supply created simply by the many feet that pass through these areas every day.

Bobby Tudor, CEO and founder of Artemis Energy Partners, and recipient of the Sustainability Lotus Award from Puranik Foundation, attributes the success of the program to the convergence of expertise, a collaborative ecosystem, and global connectivity available from Houston as part of the burgeoning Energy Transition industry.

“We are the energy capital of the world because we are the intellectual capital of energy,“ says Tudor. “The knowledge, the engineering, the expertise, sits here in a more concentrated way than it sits anywhere else in the world. It is that intellectual capital that will pave the way for us to continue to be the energy capital of the world a decade from now, two decades from now, and five decades from now.”

Additionally, Paula Harris, senior vice president of the Houston Astros Community Affairs and Executive Director for the Astros Foundation, accepted the Education Lotus Award for her continued commitment to advancing STEM education across underserved communities.

For his positive impact on the mental well-being of students, Bradley H. Smith, Ph.D., Professor of Psychological, Health, and Learning Services at the University of Houston School of Psychology, Puranik Foundation honored him with Mindfulness Lotus Award.

Applications for The Energy Project are due by 1 November each fall. In addition to the team competition, next year’s cohort includes an immersive experience in India for holistic learning and leadership development.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.