Here's why more and more companies — across industries — are making the switch to sustainable technology. Photo via Getty Images

In a modern business landscape characterized by increasing uncertainty and volatility, energy resilience has emerged as a cornerstone of strategic decision-making.

Let's delve deeper into why executives should view energy resilience as one of the best risk management investments they can make.

Mitigating risks and enhancing stability

Investing in energy resilience isn't solely about averting risks; it's about mitigating the potential losses that could arise from energy-related disruptions. It is estimated that half of today’s businesses lack an effective resilience strategy, even though nearly 97 percent of companies have been impacted by a critical risk event.

Whether it's power outages from extreme weather events, grid emergencies from a changing resource mix that is more weather dependent or cyber-attacks, disruptions can inflict substantial financial and reputational damage on businesses. By implementing resilient energy infrastructure and practices, organizations can minimize the impact of such disruptions, ensuring consistent operations even in the face of adversity. As an added benefit, these investments can also contribute to enhancing the stability of our grid infrastructure, benefiting not just individual businesses but the local community and the entire economy.

Improving costs and operational efficiency

Energy resilience also isn't just a defensive strategy; it's also about optimizing costs and operational efficiency to create competitive advantage. By investing in resilient energy infrastructure, such as backup power systems and microgrids, businesses can reduce the downtime associated with energy disruptions, thus avoiding revenue losses and operational inefficiencies.

Additionally, resilient energy solutions often lead to long-term cost savings through increased energy efficiency and reduced reliance on costly backup systems. As circumstances become increasingly uncertain, businesses that prioritize energy resilience can gain a competitive edge by operating more efficiently and cost-effectively than their counterparts.

Ensuring consistent operations amidst uncertainty

In today's rapidly changing business environment, characterized by geopolitical tensions, climate change, and technological advancements, uncertainty has become the new normal. Amidst this uncertainty, ensuring consistent operations is paramount for business continuity and long-term success. Investing in energy resilience provides businesses with the assurance that they can maintain operations even in the face of unforeseen challenges.

Whether it's a sudden power outage from a storm or the grid is stressed and unable to deliver reliable power, resilient energy infrastructure enables organizations to adapt swiftly and continue delivering products and services to customers without interruption.

Enhancing sustainability efforts

In recent years, a growing emphasis on sustainability and environmental stewardship has led to organizations recognizing the importance of reducing their carbon footprint and transitioning towards cleaner, renewable energy sources. Investing in energy resilience provides an opportunity to align sustainability efforts with business objectives.

By integrating renewable energy technologies and energy-efficient practices into their resilience strategies, organizations can not only enhance their environmental performance but also achieve long-term cost savings, ensure regulatory compliance, and build stakeholder trust.

The value of energy resilience for businesses

It is not enough to successfully handle day-to-day operations anymore; organizations need to be prepared for unpredictable events with a reliable energy supply and backup plan. Recently, a hospital in Texas had to evacuate patients and experienced heavy financial losses due to the failure of their traditional diesel generators during an extended outage.

After reevaluating their resiliency strategy, they decided to implement full-facility backup power using Enchanted Rock’s dual-purpose managed microgrid solution, which kept their power on during the next outage and ensured both patient safety and full operational capabilities. Investing in an energy resilience strategy like a microgrid will mitigate these risks and ensure always-on power in times of uncertainty.

A responsible decision for the greater good

Beyond the immediate benefits to individual businesses, investing in energy resilience is also a responsible decision for the greater good. As businesses become increasingly reliant on the grid infrastructure, ensuring its resilience is essential for the stability and reliability of the entire energy ecosystem. By proactively investing in resilient energy solutions, for themselves, businesses also contribute to strengthening the grid infrastructure, reducing the risk of widespread outages, and promoting the overall resilience of the energy system.

Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place. In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before.

———

Ken Cowan is the senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”