A Houston nonprofit's farm will soon be completely off-grid, running its entire operation on sustainable resources. Photo courtesy of Hope Farms

A Houston-area farm is one step closer to operating completely off-grid thanks to new solar panels installed with funding provided by a grant.

In a step towards a greener future, Hope Farms, a 7-acre farm operated by a Houston nonprofit organization, Recipe for Success Foundation, unveiled 18 new solar panels on Tuesday. This significant move is part of a collective effort to completely transition the farm to solar power, demonstrating its commitment to sustainability.

“The industry (solar power) itself is intimidating to people,” Gracie Cavner, founder and CEO of Hope Farms and Recipe for Success, tells EnergyCapital. “Part of our work is to inspire people to replicate what we're doing. We want to show that things aren't as hard as you think they are.”

The nonprofit organization is recognized in Houston for its work in addressing childhood obesity, with a long held mission of demystifying the common misconceptions around healthy eating. It is now tackling another challenge: dispelling the myth that solar power implementation is difficult. Hope Farms' latest initiative will not only further its energy independence, it will also show that adopting renewable energy, similar to embracing healthy food choices, is a feasible option.

The 18 solar panels will power the farm's composting toilet facility and all of the electricity used in its barn, which acts as its market stand and kitchen. Its next green phase is fast approaching and will implement solar panels on top of its flower studio, where the farm's internet and security systems reside. Its final phase will install a water well pump.

“We really did a lot of direct learning,” Cavner said. “We worked directly with solar engineers, not somebody with a company that benefited from us making one decision or another. I feel like more people would have solar if they realized they could do that.”

This is not the first green step Hope Farms has taken thanks to a Green Mountain Energy Sun Club grant, and certainly not the last. Last year, the farm cut the ribbons to its rainwater capture system that now saves roughly 95,000 gallons of water per year by capitalizing on the city’s abundant rainfall.

Since the farms beginning in 2016, it has relied on solar, even when it was only fields lit by a few lights. Soon, Hope Farms will be completely off-grid, running its entire operation on sustainable resources.

“With this expansion, I feel like it’s going to be taking the rock out of the middle of the river,” Cavner said. “It’s going to open up this train and make it easier for anybody to jump in and do it. The first step is kicking the door open and making more people want to pursue it.”

Hope Farms installed 18 solar panels and already has plans to add more. Photo courtesy of Hope Farms

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.