Three young professionals have made the cut for this year's Forbes Under 30 list in the Energy and Green Tech list for 2025. Photos via Forbes

A handful of Houstonians have been named to the Forbes 30 Under 30 Energy and Green Tech list for 2025.

Kip Daujotas is an investment associate at Aramco Ventures, a $7.5 billion venture capital arm of the world's largest energy company. Houston is the Americas headquarters for Saudi Aramco. Since its inception in 2012, Aramco Ventures has invested in more than 100 tech startups. Daujotas joined the team over two years ago after studying for an MBA at Yale University. He led Aramco’s first direct air capture (DAC) investment — in Los Alamos, New Mexico-based Spiritus.

Also representing the corporate side of the industry, Wenting Gao immigrated from Beijing to obtain an economics degree from Harvard University, then got a job at consulting giant McKinsey, where she recently became the firm’s youngest partner. Gao works on bringing sustainability strategies to energy and materials companies as well as investors. Her areas of expertise include battery materials, waste, biofuels, and low-carbon products.

Last but not least, Houston entrepreneur Rawand Rasheed is co-founder and CEO of Houston-based Helix Earth. He co-founded the startup after earning a doctoral degree from Rice University and co-inventing Helix’s core technology while at NASA, first as a graduate research fellow and then as an engineer. The core technology, a space capsule air filtration system, has been applied to retrofitting HVAC systems for commercial buildings.

Each year, Forbes 30 Under 30 recognizes 600 honorees in 20 categories. The 2025 honorees were selected from more than 10,000 nominees by Forbes staff and a panel of independent judges based on factors such as funding, revenue, social impact, scale, inventiveness, and potential.

Specifically, the Energy & Green Tech category recognizes young entrepreneurs driving innovation that’s aimed at creating a cleaner, greener future.

“Gen Z is one of the fastest-growing groups of entrepreneurs and creators, who are reshaping the way the world conducts business, and our Under 30 class of 2025 proves that you can never begin your career journey too early,” says Alexandra York, editor of Forbes Under 30. “With the expansion across AI, technology, social media, and other industries, the honorees on this year’s list are pushing the boundaries and building their brands beyond traditional scopes.”

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo by Sergei A/Pexels

Houston investor leads Houston climatetech startup's $5.6M seed to transform energy-efficient HVAC challenges

local funding

A Houston startup with clean tech originating out of NASA has secured millions in funding.

Helix Earth Technologies closed an oversubscribed $5.6 million seed funding led by Houston-based research and investment firm Veriten. Anthropocene Ventures, Semilla Capital, and others including individual investors also participated in the round.

“This investment will empower the Helix Earth team to accelerate the development and deployment of our first groundbreaking hardware technology designed to disrupt a significant portion of the commercial air conditioning market, an industry that is ready for innovation,” Rawand Rasheed, Helix Earth co-founder and CEO, says in a news release.

Helix Earth was founded based on NASA technology co-invented by Rasheed and spun out of Rice University and has been incubated at Greentown Labs in Houston since 2022. Currently being piloted, the technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators.

“The enthusiastic response from investors reinforces our team’s confidence in our ability to transform innovation-starved sectors such as commercial air conditioning with an easy-to-install-and-maintain solution that benefits distributors, mechanical contractors, and most of all, building owners, with a positive benefit to the environment,” Rasheed says.

Prior to its raise, the company received grant funding from the National Science Foundation and the United States Department of Energy.

“We couldn’t be more excited to partner with the Helix Earth team," Maynard Holt, Veriten’s founder and CEO, adds. "We were so impressed with their unique combination of a technology with broad applicability across multiple industries, a product that will have an immediate and measurable impact on our energy system, and a fantastic and well-rounded team.”

Helix Earth, per the release, reports that is also looking to provide solutions for commercial humidity control and carbon capture.

———

This article originally ran on InnovationMap.

Houston scores federal funding for energy transition projects — and more things to know this week. Photo via Getty Images

Houston's $1.2B win, events not to miss, and other things to know in energy transition this week

take note

Editor's note: It's a new week — start it strong with three quick things to know in Houston's energy transition ecosystem: Federal funding deployed in Houston, a podcast to stream, and more.


Federal funding deals in HOU

DOE has granted funds big and small to Houston energy organizations. Photo via Getty Images

The big news last week was that a Houston-area project been announced as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law funding to advance domestic hydrogen production. President Biden and Energy Secretary Jennifer Granholm named the seven regions to receive funding in a White House statement on Friday, October 13. The Gulf Coast's project, HyVelocity Hydrogen Hub, will receive up to $1.2 billion — the most any hub will receive. Read more.

Also this month, the U.S. Department of Energy's Advanced Research Projects Agency-Energy deployed $10 million into three projects working on superconducting tape innovation. Two of these projects are based on research from the University of Houston. Superconductivity — found only in certain materials — is a focus point for the DOE because it allows for the conduction of direct electric current without resistance or energy loss. Read more.

Must-attend events

Upcoming events to put on your radar. Photo via Getty Images

Put these upcoming events on your radar.

  • October 30-31 — Fuze is a must-attend event for executives, investors, and founders serious about solving the energy crisis and boosting company efficiency. Learn more.
  • November 1 — The Greentown Labs Climatetech Summit 2023 will feature energy transition startups, thought leaders, and more both in person and online. Learn more.
  • November 8 — The Houston Innovation Awards will honor the city's startups, entrepreneurs, and ecosystem, including energy tech innovators. Learn more.

Today's listen: Energy Tech Startups

Rawand Rasheed, the CEO and founder of Helix Earth Technologies, joins the Energy Tech Startups podcast. Photo via LinkedIn

Excessive energy consumption in air conditioning systems is a pressing issue with far-reaching implications for carbon emissions and climate change.

Rawand Rasheed, the CEO and founder of Helix Earth Technologies, is at the forefront of addressing this challenge. With a distinguished background as an aerospace engineer with NASA, Rawand’s expertise is now channeled towards the built environment and heavy industries.

In a recent episode of Energy Tech Startups, we dive into how Rawand’s journey from space technology innovations is now revolutionizing energy consumption in air conditioning systems.


Rawand Rasheed, the CEO and founder of Helix Earth Technologies, joins the Energy Tech Startups podcast. Photo via LinkedIn

From NASA to HVAC: How this Houston tech startup is revolutionizing energy-efficient air conditioning

Q&A

Excessive energy consumption in air conditioning systems is a pressing issue with far-reaching implications for carbon emissions and climate change.

Rawand Rasheed, the CEO and founder of Helix Earth Technologies, is at the forefront of addressing this challenge. With a distinguished background as an aerospace engineer with NASA, Rawand’s expertise is now channeled towards the built environment and heavy industries.

In a recent episode of Energy Tech Startups, we dive into how Rawand’s journey from space technology innovations is now revolutionizing energy consumption in air conditioning systems.


In an era where the urgency to combat climate change is palpable, innovators like Rawand Rasheed are making monumental strides in bridging the gap between space-age technology and sustainable solutions for our planet. Drawing from her unique experiences at NASA and her unwavering commitment to the environment, Rawand's work with Helix Earth Technologies exemplifies the transformative potential of cross-disciplinary expertise. As we witness the evolution of her groundbreaking technology in the HVAC sector, it serves as a potent reminder that with determination, innovation, and a clear vision, we can indeed reshape our world for the better. The future of energy-efficient air conditioning, and by extension, a more sustainable world, is on the horizon, and pioneers like Rawand are leading the way.

Energy Tech Startups: How did your experience at NASA inspire your work in decarbonization and HVAC?

Rawand Rasheed: At NASA, we often faced unique challenges that required innovative solutions, especially in space. One such challenge was fighting fires in space using a micrometer-sized droplet spray of water. This led us to develop an efficient filter that could capture these small droplets without any moving parts. This technology, initially designed for space, turned out to have significant implications for climate tech, particularly in capturing and filtering air streams.

ETS: How does your technology help in reducing energy consumption in air conditioning systems?

RR: Our technology can significantly reduce air conditioning energy loads, cutting them by over 50%. It works by absorbing more from air streams, making the cooling process more efficient. Currently, we're focusing on commercial HVAC systems and are close to scaling our system to a commercial unit. Within the next year, we aim to demonstrate the effectiveness of our system at this scale through pilot projects.

ETS: How did your early life shape your entrepreneurial aspirations?

RR: Growing up, I witnessed firsthand the power of determination and hard work. Starting from scratch, both culturally and financially, and achieving success made me believe that anything is possible. This belief, combined with my passion for the environment and engineering, always fueled my desire to start a company. My graduate studies further solidified this aspiration, merging my interests and leading me to establish my own venture in the realm of environmental engineering.


------

This conversation has been edited for brevity and clarity. Click here to listen to the full episode. Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future. Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.