Houstonians, here's how to get solar panels affordably. Photo by Kindel Media/Pexels

There’s no question that some homeowners feel a twinge of envy when they see solar panels appearing on homes in their neighborhood. The twin benefits of cutting utility costs and participating in renewable energy are alluring to many.

But as those homeowners consider going solar, many never take the plunge because of concerns about affordability, maintenance and uncertainties around qualifying for tax credits and other state and local rebates. For all its appeal, going solar can seem a bit daunting.

But there are more plentiful financing options available to many Texas homeowners that offer accommodating paths for acquiring solar. They also provide solutions to concerns around maintenance and affordability.

Two innovative strategies for switching to solar

Solar energy providers have been working diligently to deliver more convenient pathways for consumers to make the switch. Recently, two new strategies were introduced in Texas: direct, loan-based ownership, and third-party ownership.

Direct system ownership

With this option, homeowners take out a loan to cover the cost of their solar system and its installation. They can then repay that loan over timeframes ranging from five to twenty-five years.

There are varying rates and terms available to accommodate the preferences and goals of individual homeowners. And while manufacturer warranties and installer workmanship warranties have been available to homeowners, it is important to look for companies that offer guarantees for an extended period of time given that most systems can last several decades. For example, Freedom Forever offers a 25-year production guarantee that provides consumers with a measure of comfort around the long-term costs of owning these systems.

Third-party ownership

Another solar financing option involves third-party ownership using a Power Purchase Agreement (PPA) or lease. With a PPA option, a third-party owns the system, and homeowners either agree to buy power at a pre-defined rate per kWh or through a set monthly payment. Homeowners also have the option of leasing the panels for comparable pre-defined rates or monthly payments. (Maybe add one more sentence that explains the difference between PPAs vs lease).

With these two options, the third party insures and maintains the system. This alleviates some of the maintenance and up front cost concerns that have held some back from solar.

Issues to consider before making the switch

Even with the availability of these new options, solar power doesn’t always make sense for everyone. Your personal energy goals and preferences, as well as your tax situation, are important factors to consider when making this decision. Here are some questions folks should ask before making the switch:

  • Would I prefer owning the system outright or relying on a third-party to handle insurance and maintenance?
  • Am I looking for monthly savings now through a PPA or lease or would I prefer the quickest payback and return on investment?
  • Do I have a tax liability that enables me to get a Federal Tax Credit?

The answers to these questions will help you determine which option, if any, makes sense for you. It’s important to remember there is no “best solution for everyone” when considering your options; there’s only the question of what’s right for you.

Other important considerations

Keep in mind that not everyone will qualify for one of the solar options described above. Even in these cases, your state, local utility or a regional credit union may offer alternative financing options that can help you access solar.

Home equity lines of credit may also be a fitting option for some. Dsireusa.org is an excellent resource to help you investigate what incentives and programs are available in your area.

Final tips

As with any important financial decision, it’s a homeowner’s’ responsibility to practice due diligence in terms of assessing what they can afford and who they buy from. Here are some recommended best practices:

  1. Always get several quotes from various companies.
  2. Ask about production guarantees and warranties.
  3. Ask about the need of a service panel upgrade at the start.
  4. Verify that the company you choose offers products that will work with your home construction and roof.
  5. Prioritize solar providers with an extensive list of authorized dealers, such as Freedom Forever.
  6. Confirm that your prospective solar partner has purchasing options around loans and financing and can help you identify the option that best suits your needs.

The good news is that more homeowners than ever before can now feel more comfortable moving to solar. The new options described above for financing and maintenance can make that switch considerably less daunting than it seemed only a few years ago.

———

Robert Angell is the vice president of sales operations at Freedom Forever, one the nation’s largest solar installers.

Under two 15-year deals, Southern California Edison has agreed to buy a total of 320 megawatts of geothermal power from Fervo Energy. Photo via Getty Images

Houston geothermal company picks up power purchase agreement in California

heating up

Houston-based Fervo Energy, a provider of geothermal power, has signed up one of the country’s largest utilities as a new customer.

Under two 15-year deals, Southern California Edison has agreed to buy a total of 320 megawatts of geothermal power from Fervo. Financial terms weren’t disclosed. The power will be enough to deliver electricity to the equivalent of 350,000 homes.

Southern California Edison, based in Rosemead, California, serves about 15 million people throughout a 50,000-square-mile area in California.

The utility will purchase the power from Fervo’s 400-megawatt Cape Station plant, which is under construction in southwest Utah. The plant’s first phase, providing 70 megawatts of power, is expected to be online by 2026.

“This announcement is another milestone in California’s commitment to clean zero-carbon electricity,” David Hochschild, chair of the California Energy Commission, says in a news release.

“Enhanced geothermal systems complement our abundant wind and solar resources by providing critical base load when those sources are limited,” he adds. “This is key to ensuring reliability as we continue to transition away from fossil fuels.”

In June, Fervo announced it would supply 115 megawatts of geothermal power for Google’s two data centers in Nevada. Two years ago, Fervo signed a deal with energy aggregators in California to supply 53 megawatts of geothermal power from Cape Station.

“As electrification increases and climate change burdens already fragile infrastructure, geothermal will only play a bigger role in U.S. power markets,” says Dawn Owens, Fervo's head of development and commercial markets.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.