Gold H2 has aligned itself with an oil and gas company, making its Black 2 Gold microbial technology available for the first time. Photo via cemvita.com

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. Photo via exxonmobil.be

ExxonMobil extends European fuel cell pilot project

next step

The Esso fuel business of Spring-based ExxonMobil is forging ahead with a pilot project at its Dutch refinery in Rotterdam to test technology aimed at reducing carbon emissions and simultaneously generating electricity and hydrogen.

The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. The deal is now set to expire at the end of 2026.

ExxonMobil and FuelCell announced the pilot project in 2023.

“The unique advantage of this technology is that it not only captures CO2 but also produces low-carbon power, heat, and hydrogen as co-products,” Geoff Richardson, senior vice president of ExxonMobil Low Carbon Solutions, said last year.

The Rotterdam facility, which opened in 1960, will be the first location in the world to test the technology. The technology eventually could be rolled out at additional ExxonMobil sites.

The European Union is among the funders of the pilot project. FuelCell is making carbonate fuel cells for the project at its manufacturing plant in Torrington, Connecticut.

The extended agreement enables FuelCell to incorporate elements of the jointly developed technology into carbon capture products currently being marketed to customers. ExxonMobil and FuelCell are working on formalizing an arrangement for selling the new technology.

“The technology, which captures carbon while simultaneously generating electricity and hydrogen, could improve the economics of carbon capture and could potentially lower the barrier to broader adoption of carbon capture in the marketplace,” according to a FuelCell news release.

FuelCell says its 10-year partnership with ExxonMobil has focused on developing technology that reduces carbon emissions from emission-intensive sectors while generating electricity and hydrogen in the process — “something that no other fuel cell technology or conventional absorption systems can do.”

Houston startup Sage Geosystems released the results of its pilot at a Shell-drilled oil well in the Rio Grande Valley’s Starr County. Photo via sagegeosystems.com

Houston-based geothermal energy startup releases promising results of Texas pilot

hot off the press

As it seeks an additional $30 million in series A funding, Houston startup Sage Geosystems has released promising results from a test of its technology for underground storage of geothermal energy.

Sage says the pilot project, conducted at a Shell-drilled oil well in the Rio Grande Valley’s Starr County, showed the company’s long-term energy storage can compete on a cost basis with lithium-ion battery storage, hydropower storage, and natural gas-powered peaker plants. Peaker plants supply power during periods of peak energy demand.

Furthermore, Sage’s geothermal technology will provide more power capacity at half the cost of other advanced geothermal systems, the company says.

Sage’s storage system retrofits oil and gas wells with the company’s geothermal technology. But the company says its technology “can be deployed virtually anywhere.”

The system relies on mechanical storage instead of battery storage. In mechanical storage, heat, water, or air works in tandem with compressors, turbines, and other machinery. By contrast, battery storage depends on chemistry to get the job done.

“We have cracked the code to provide the perfect complement to renewable energy. … The opportunities for our energy storage to provide power are significant — from remote mining operations to data centers to solving energy poverty in remote locations,” former Shell executive Cindy Taff, CEO of Sage, says in a September 12 news release.

Sage says its storage capacity can be connected to existing power grids, or it can develop microgrids that harness stored energy.

An August 2023 article in The New York Times explained that Sage “is pursuing fracked wells that act as batteries. When there’s surplus electricity on the grid, water gets pumped into the well. In times of need, pressure and heat in the fractures pushes water back up, delivering energy.”

The pilot project, a joint venture between Sage and the Bureau of Economic Ecology at the University of Texas at Austin, was performed as part of a feasibility study financed by the Air Force. Now that the test results are in, Sage plans to build a prototype geothermal project at the Air Force’s Ellington Field Joint Reserve Base in Houston.

Sage says another feasibility study is underway in the Middle East in partnership with an unnamed oil and gas company.

Founded in 2020, Sage plans to raise another $30 million to accompany its previous series A funding.

The Virya climate fund and Houston-based drilling contractor Nabors Industries helped finance the pilot project in Starr County.

Last year, Sage announced it received an undisclosed amount of equity from Houston-based Ignis H2 Energy, a geothermal exploration and development company, and Dutch energy company Geolog International. Also last year, Sage said Nabors and Virya had teamed up for a $12 million investment in the startup.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”