Breaker19 is an Uber-like truck booking platform founded by two Houstonians. Photo by Marcin Jozwiak/Pexels

In a world where ”the customer is always right," two Houston founders have followed that rule right to their next venture.

Breaker19 — a groundbreaking mobile application built in late 2023 to be an efficient oilfield trucking and hotshot marketplace — was co-founded by Rodney Giles and Tyler Cherry. The native Houstonians also co-founded BidOut, a leading Oil & Gas procurement platform in 2021.

“About a year ago, one of our BidOut clients, a large operator, came to us and basically said that the biggest problem they have in the oil field is ordering trucks,” remembers Giles. “From there, they asked would we be willing to build something similar to Uber, but for oilfield logistics and trucking? So, we built Breaker19.”

After their customer presented a challenge, Giles and Cherry got to work. They envisioned the technical architecture almost immediately and assembled a team of software engineers to build an in-house application in less than a year.

“We launched Breaker19 in November 2023, and my goodness, it has taken off like crazy,” says Giles. “It is growing incredibly fast. We’re doing hundreds of truckloads a day now, all throughout West Texas, South Texas, North Dakota, really all over the U.S.”

Now, armed with such large publicly traded companies as British Petroleum, Breakout19 has a network of more than 1,500 trucks similar to transportation companies like Uber, where drivers make themselves available to be dispatched according to their health, safety and environmental requirements.

Breaker19 is doing so well, in fact, that it’s sped past Giles and Cherry’s original collaboration, BidOut.

“Breaker 19's probably, you know, growing ten times of where BidOut even was in its early days,” says Giles. “So, we'll always explore options that make sense for our shareholders. Fortunately, my co-founder and I have previous companies that we built and sold and have experience in scaling and have experiences in multiple departments, whether it be finance or sales or marketing or operations.

“So, currently, we do operate BidOut and Breaker19 separately, but they are, you know, through common operating structures. And, you know, we're able to maintain the scale and maintain the growth right now. And right now, the company is doing great financially and has cash flow positives. So, for us, you know, our goal is just to continue. I feel like we've kind of solved an archaic problem and did it in a really simple way, and it's working out pretty well.”

And it all started with a simple question from a customer — "Hey, can you guys come up with something like this?"

“It all came together just by listening to our customer’s needs,” says Giles. “And we always try to go into our clients and help them with a lot of what they do. But we always want to know about what their other pain points are. You know, there's still people, you know, that are operating with very archaic processes, very, you know, manual back-office processes. And our job is to speed them up with software. And so Breaker19 was able to do that.”

Practically speaking, Breaker19 is more than a software solution. It also closes the gap between qualified drivers and end clients by vetting participants for the platform in an efficient and pragmatic fashion.

“We have a very rigorous vetting process for the drivers,” Giles explains. “I mean, that's really what makes the oil and gas trucking industry so unique. Insurance requirements have to be significantly higher than most carriers. They have to go through very well-funded safety trainings where they are familiar with the oil field. And then number three, these drivers have to have personal protective equipment. They have to have flame-retardant clothing, they have to have slo-mo boots and they have to have hard hats.”

Procedure is important, but professionalism is equally important to Breaker19.

“You know, we do not allow the carrier to show up on a customer's locations in shorts and flip-flops or Crocs and, you know, be protected,” says Giles. “And so, for what we're dealing with is very mission critical, but also very, you know, very high-risk.

“For example, we are checking insurance statuses four times a day. If a carrier were to cancel their insurance, we're aware of it immediately because we want to make sure that we always have active insurance in place. So, we have a process that these carriers go through. Again, we've got over 1,500 of them now that are well-vetted and well-qualified.”

As Breaker19 continues to scale, Giles and Cherry hope their burgeoning app becomes the go-to ordering platform for the entire oil and gas industry for all of their trucking, hot shot and transportation needs.

“We're bringing on some significant, large enterprise clients right now that make up 10% of the U.S. market share for each customer,” says Giles “So I think when we start to compound those, I think we easily see the trajectory there as really being something that's taking off pretty fast. So, I think at the end of the day, we just hope to keep delivering a great experience for our clients, make their ordering process easy.”

With both BidOut and Breaker19 doing great financially, proud Klein Oak High School alums Giles and Cherry have purchased a steer to support Texas youth and agricultural causes. Additionally, moving forward, the duo pledges to give away a full steer each month to a customer of their Breaker19 platform.

"We are passionate about giving back to our community and nurturing the next generation of leaders in Texas," says Cherry. "Having personally experienced the transformative impact of FFA, we saw this initiative as a meaningful way to both support local agriculture and provide our clients with a taste of authentic Texas beef.”

———

This article originally ran on InnovationMap.

Two startups have recently announced support from Houston-based Chevron Technology Ventures. Photo via Getty Images

Chevron supports 2 carbon emissions tech startups

making moves

Chevron Technology Ventures has added two startups to its portfolio — one to its startup accelerator and one via an investment.

Delaware-based Compact Membrane Systems closed an oversubscribed series A funding round of $16.5 million led by Pangaea Ventures. CTV also contributed to the round, along with GC Ventures, Solvay Ventures, and Technip Energies.

CMS's technology is targeting carbon capture in traditionally hard-to-abate sectors, such as steel, cement, etc., which represent more than a tenth of worldwide emissions. The CMS platform, which operates in a 10,000-square-foot lab and manufacturing facility in Delaware, is a fully electrified and low-cost solution.

“We are delighted to have secured such a strong group of investors who share our vision for delivering a revolutionary carbon capture technology for industrial applications,” says Erica Nemser, CEO of Compact Membrane Systems, in a news release. “This oversubscribed funding round catalyzes our ability to deliver large projects. Deployment of our commercial systems by 2026 will have measurable environmental and economic benefits to our customers and society.”

It's the latest investment from CTV's $300 million Future Energy Fund II, which specifically "focuses on industrial decarbonization, emerging mobility, energy decentralization, and the growing circular economy," says Jim Gable, vice president of innovation at Chevron and president of CTV.

“The technology that CMS has developed has the potential to drive further efficiencies and cost reduction along the CCUS value chain, supporting decarbonization of hard-to-abate sectors and complementing our existing portfolio of investments in this space,” Gable says in the release.

The company is planning to use its new funding to further develop and commercialize its product by 2026.

Another startup has announced support from Chevron last month. Calgary, Alberta-based Arolytics Inc. announced last month that its been accepted into CTV's Catalyst Program. The company has an emissions software and data analytics platform for the oil and gas sector, and the program will help it further develop and deploy its technology.

"Being selected for the Catalyst Program is an amazing opportunity for Arolytics," says Liz O'Connell, CEO of Arolytics, in a news release. "The interest from Chevron demonstrates the oil and gas industry's desire to reduce emissions. It aligns closely with Arolytics' mission to build and execute efficient emissions management programs that enable industry to become leaders in emissions management."

Arolytics' technology, which includes AroViz, an emissions management software, and AroFEMP, an emissions forecasting model, targets methane emissions specifically, per the release.

Launched in 2017, the CTV Catalyst Program accelerates early-stage companies that are working on innovations within the energy industry. Arolytics will use the program to make key connections, identify important use cases, and expand into the U.S. Market.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

METRO rolls out electric shuttles for downtown Houston commuters

seeing green

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.