Breaker19 is an Uber-like truck booking platform founded by two Houstonians. Photo by Marcin Jozwiak/Pexels

In a world where ”the customer is always right," two Houston founders have followed that rule right to their next venture.

Breaker19 — a groundbreaking mobile application built in late 2023 to be an efficient oilfield trucking and hotshot marketplace — was co-founded by Rodney Giles and Tyler Cherry. The native Houstonians also co-founded BidOut, a leading Oil & Gas procurement platform in 2021.

“About a year ago, one of our BidOut clients, a large operator, came to us and basically said that the biggest problem they have in the oil field is ordering trucks,” remembers Giles. “From there, they asked would we be willing to build something similar to Uber, but for oilfield logistics and trucking? So, we built Breaker19.”

After their customer presented a challenge, Giles and Cherry got to work. They envisioned the technical architecture almost immediately and assembled a team of software engineers to build an in-house application in less than a year.

“We launched Breaker19 in November 2023, and my goodness, it has taken off like crazy,” says Giles. “It is growing incredibly fast. We’re doing hundreds of truckloads a day now, all throughout West Texas, South Texas, North Dakota, really all over the U.S.”

Now, armed with such large publicly traded companies as British Petroleum, Breakout19 has a network of more than 1,500 trucks similar to transportation companies like Uber, where drivers make themselves available to be dispatched according to their health, safety and environmental requirements.

Breaker19 is doing so well, in fact, that it’s sped past Giles and Cherry’s original collaboration, BidOut.

“Breaker 19's probably, you know, growing ten times of where BidOut even was in its early days,” says Giles. “So, we'll always explore options that make sense for our shareholders. Fortunately, my co-founder and I have previous companies that we built and sold and have experience in scaling and have experiences in multiple departments, whether it be finance or sales or marketing or operations.

“So, currently, we do operate BidOut and Breaker19 separately, but they are, you know, through common operating structures. And, you know, we're able to maintain the scale and maintain the growth right now. And right now, the company is doing great financially and has cash flow positives. So, for us, you know, our goal is just to continue. I feel like we've kind of solved an archaic problem and did it in a really simple way, and it's working out pretty well.”

And it all started with a simple question from a customer — "Hey, can you guys come up with something like this?"

“It all came together just by listening to our customer’s needs,” says Giles. “And we always try to go into our clients and help them with a lot of what they do. But we always want to know about what their other pain points are. You know, there's still people, you know, that are operating with very archaic processes, very, you know, manual back-office processes. And our job is to speed them up with software. And so Breaker19 was able to do that.”

Practically speaking, Breaker19 is more than a software solution. It also closes the gap between qualified drivers and end clients by vetting participants for the platform in an efficient and pragmatic fashion.

“We have a very rigorous vetting process for the drivers,” Giles explains. “I mean, that's really what makes the oil and gas trucking industry so unique. Insurance requirements have to be significantly higher than most carriers. They have to go through very well-funded safety trainings where they are familiar with the oil field. And then number three, these drivers have to have personal protective equipment. They have to have flame-retardant clothing, they have to have slo-mo boots and they have to have hard hats.”

Procedure is important, but professionalism is equally important to Breaker19.

“You know, we do not allow the carrier to show up on a customer's locations in shorts and flip-flops or Crocs and, you know, be protected,” says Giles. “And so, for what we're dealing with is very mission critical, but also very, you know, very high-risk.

“For example, we are checking insurance statuses four times a day. If a carrier were to cancel their insurance, we're aware of it immediately because we want to make sure that we always have active insurance in place. So, we have a process that these carriers go through. Again, we've got over 1,500 of them now that are well-vetted and well-qualified.”

As Breaker19 continues to scale, Giles and Cherry hope their burgeoning app becomes the go-to ordering platform for the entire oil and gas industry for all of their trucking, hot shot and transportation needs.

“We're bringing on some significant, large enterprise clients right now that make up 10% of the U.S. market share for each customer,” says Giles “So I think when we start to compound those, I think we easily see the trajectory there as really being something that's taking off pretty fast. So, I think at the end of the day, we just hope to keep delivering a great experience for our clients, make their ordering process easy.”

With both BidOut and Breaker19 doing great financially, proud Klein Oak High School alums Giles and Cherry have purchased a steer to support Texas youth and agricultural causes. Additionally, moving forward, the duo pledges to give away a full steer each month to a customer of their Breaker19 platform.

"We are passionate about giving back to our community and nurturing the next generation of leaders in Texas," says Cherry. "Having personally experienced the transformative impact of FFA, we saw this initiative as a meaningful way to both support local agriculture and provide our clients with a taste of authentic Texas beef.”

———

This article originally ran on InnovationMap.

Two startups have recently announced support from Houston-based Chevron Technology Ventures. Photo via Getty Images

Chevron supports 2 carbon emissions tech startups

making moves

Chevron Technology Ventures has added two startups to its portfolio — one to its startup accelerator and one via an investment.

Delaware-based Compact Membrane Systems closed an oversubscribed series A funding round of $16.5 million led by Pangaea Ventures. CTV also contributed to the round, along with GC Ventures, Solvay Ventures, and Technip Energies.

CMS's technology is targeting carbon capture in traditionally hard-to-abate sectors, such as steel, cement, etc., which represent more than a tenth of worldwide emissions. The CMS platform, which operates in a 10,000-square-foot lab and manufacturing facility in Delaware, is a fully electrified and low-cost solution.

“We are delighted to have secured such a strong group of investors who share our vision for delivering a revolutionary carbon capture technology for industrial applications,” says Erica Nemser, CEO of Compact Membrane Systems, in a news release. “This oversubscribed funding round catalyzes our ability to deliver large projects. Deployment of our commercial systems by 2026 will have measurable environmental and economic benefits to our customers and society.”

It's the latest investment from CTV's $300 million Future Energy Fund II, which specifically "focuses on industrial decarbonization, emerging mobility, energy decentralization, and the growing circular economy," says Jim Gable, vice president of innovation at Chevron and president of CTV.

“The technology that CMS has developed has the potential to drive further efficiencies and cost reduction along the CCUS value chain, supporting decarbonization of hard-to-abate sectors and complementing our existing portfolio of investments in this space,” Gable says in the release.

The company is planning to use its new funding to further develop and commercialize its product by 2026.

Another startup has announced support from Chevron last month. Calgary, Alberta-based Arolytics Inc. announced last month that its been accepted into CTV's Catalyst Program. The company has an emissions software and data analytics platform for the oil and gas sector, and the program will help it further develop and deploy its technology.

"Being selected for the Catalyst Program is an amazing opportunity for Arolytics," says Liz O'Connell, CEO of Arolytics, in a news release. "The interest from Chevron demonstrates the oil and gas industry's desire to reduce emissions. It aligns closely with Arolytics' mission to build and execute efficient emissions management programs that enable industry to become leaders in emissions management."

Arolytics' technology, which includes AroViz, an emissions management software, and AroFEMP, an emissions forecasting model, targets methane emissions specifically, per the release.

Launched in 2017, the CTV Catalyst Program accelerates early-stage companies that are working on innovations within the energy industry. Arolytics will use the program to make key connections, identify important use cases, and expand into the U.S. Market.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

As electric bills rise, evidence mounts that data centers share blame

Data Talk

Amid rising electric bills, states are under pressure to insulate regular household and business ratepayers from the costs of feeding Big Tech's energy-hungry data centers.

It's not clear that any state has a solution and the actual effect of data centers on electricity bills is difficult to pin down. Some critics question whether states have the spine to take a hard line against tech behemoths like Microsoft, Google, Amazon and Meta.

But more than a dozen states have begun taking steps as data centers drive a rapid build-out of power plants and transmission lines.

That has meant pressuring the nation's biggest power grid operator to clamp down on price increases, studying the effect of data centers on electricity bills or pushing data center owners to pay a larger share of local transmission costs.

Rising power bills are “something legislators have been hearing a lot about. It’s something we’ve been hearing a lot about. More people are speaking out at the public utility commission in the past year than I’ve ever seen before,” said Charlotte Shuff of the Oregon Citizens’ Utility Board, a consumer advocacy group. “There’s a massive outcry.”

Not the typical electric customer

Some data centers could require more electricity than cities the size of Pittsburgh, Cleveland or New Orleans, and make huge factories look tiny by comparison. That's pushing policymakers to rethink a system that, historically, has spread transmission costs among classes of consumers that are proportional to electricity use.

“A lot of this infrastructure, billions of dollars of it, is being built just for a few customers and a few facilities and these happen to be the wealthiest companies in the world,” said Ari Peskoe, who directs the Electricity Law Initiative at Harvard University. “I think some of the fundamental assumptions behind all this just kind of breaks down.”

A fix, Peskoe said, is a “can of worms" that pits ratepayer classes against one another.

Some officials downplay the role of data centers in pushing up electric bills.

Tricia Pridemore, who sits on Georgia’s Public Service Commission and is president of the National Association of Regulatory Utility Commissioners, pointed to an already tightened electricity supply and increasing costs for power lines, utility poles, transformers and generators as utilities replace aging equipment or harden it against extreme weather.

The data centers needed to accommodate the artificial intelligence boom are still in the regulatory planning stages, Pridemore said, and the Data Center Coalition, which represents Big Tech firms and data center developers, has said its members are committed to paying their fair share.

But growing evidence suggests that the electricity bills of some Americans are rising to subsidize the massive energy needs of Big Tech as the U.S. competes in a race against China for artificial intelligence superiority.

Data and analytics firm Wood Mackenzie published a report in recent weeks that suggested 20 proposed or effective specialized rates for data centers in 16 states it studied aren’t nearly enough to cover the cost of a new natural gas power plant.

In other words, unless utilities negotiate higher specialized rates, other ratepayer classes — residential, commercial and industrial — are likely paying for data center power needs.

Meanwhile, Monitoring Analytics, the independent market watchdog for the mid-Atlantic grid, produced research in June showing that 70% — or $9.3 billion — of last year's increased electricity cost was the result of data center demand.

States are responding

Last year, five governors led by Pennsylvania's Josh Shapiro began pushing back against power prices set by the mid-Atlantic grid operator, PJM Interconnection, after that amount spiked nearly sevenfold. They warned of customers “paying billions more than is necessary.”

PJM has yet to propose ways to guarantee that data centers pay their freight, but Monitoring Analytics is floating the idea that data centers should be required to procure their own power.

In a filing last month, it said that would avoid a "massive wealth transfer” from average people to tech companies.

At least a dozen states are eyeing ways to make data centers pay higher local transmission costs.

In Oregon, a data center hot spot, lawmakers passed legislation in June ordering state utility regulators to develop new — presumably higher — power rates for data centers.

The Oregon Citizens’ Utility Board says there is clear evidence that costs to serve data centers are being spread across all customers — at a time when some electric bills there are up 50% over the past four years and utilities are disconnecting more people than ever.

New Jersey’s governor signed legislation last month commissioning state utility regulators to study whether ratepayers are being hit with “unreasonable rate increases” to connect data centers and to develop a specialized rate to charge data centers.

In some other states, like Texas and Utah, governors and lawmakers are trying to avoid a supply-and-demand crisis that leaves ratepayers on the hook — or in the dark.

Doubts about states protecting ratepayers

In Indiana, state utility regulators approved a settlement between Indiana Michigan Power Co., Amazon, Google, Microsoft and consumer advocates that set parameters for data center payments for service.

Kerwin Olsen, of the Citizens Action Council of Indiana, a consumer advocacy group, signed the settlement and called it a “pretty good deal” that contained more consumer protections than what state lawmakers passed.

But, he said, state law doesn't force large power users like data centers to publicly reveal their electric usage, so pinning down whether they're paying their fair share of transmission costs "will be a challenge.”

In a March report, the Environmental and Energy Law Program at Harvard University questioned the motivation of utilities and regulators to shield ratepayers from footing the cost of electricity for data centers.

Both utilities and states have incentives to attract big customers like data centers, it said.

To do it, utilities — which must get their rates approved by regulators — can offer “special deals to favored customers” like a data center and effectively shift the costs of those discounts to regular ratepayers, the authors wrote. Many state laws can shield disclosure of those rates, they said.

In Pennsylvania, an emerging data center hot spot, the state utility commission is drafting a model rate structure for utilities to consider adopting. An overarching goal is to get data center developers to put their money where their mouth is.

“We’re talking about real transmission upgrades, potentially hundreds of millions of dollars,” commission chairman Stephen DeFrank said. “And that’s what you don’t want the ratepayer to get stuck paying for."

8+ can't-miss events at Houston Energy and Climate Startup Week 2025

where to be

Editor's note: This article may be updated to include additional events.

The second annual Houston Energy and Climate Startup Week is less than a month away—and the calendar of events is taking shape.

The series of panels, happy hours and pitch days will take place Sept. 15-19. The Ion District will host many of the week's events.

Here are the details on some of the can't-miss events of the week:

Houston Energy & Climate Startup Week Kickoff Panel and Block Party

Join fellow innovators, founders, investors and energy leaders at this kick-off event hosted by The Ion and HETI, which will feature brief welcome remarks, a panel discussion and networking, followed by a block party on the Ion Plaza.

This event is Monday, Sept. 15, at 4 p.m. at The Ion. Register here.

Energytech Nexus Pilotathon

Grab breakfast and take in keynotes and panels by leaders from New Climate Ventures, V1 Climate, Halliburton, Energy Tech Nexus and many others. Then hear pitches during the Pilotathon, which targets startups ready to implement pilot projects within six to 12 months.

This event is Tuesday, Sept. 16, from 8 a.m.-5 p.m. at GreenStreet. Get tickets here.

Meet the Activate Houston Cohort 2025 Fellows

Meet Activate's latest cohort, which was named this summer, and also learn more about its 2024 group.

This event is Tuesday, Sept. 16, at 5 p.m. at the Ion. Register here.

New Climate Ventures Afterparty

Enjoy music, networking and carbon-negative spirits at Axelrad. Houston startups Quaise Energy, Solidec, Dimensional Energy, Rheom Materials, and Active Surfaces will also be on-site.

This event is Tuesday, Sept. 16, from 6:30-9:30 p.m. at Axelrad. Register here.

Green ICU Conference: Sustainability in Health Care for a Healthier Future

Houston Methodist will host its inaugural Green ICU Conference during Houston Energy & Climate Week. The conference is designed to bring together healthcare professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

This event is Wednesday, Sept. 17. from 8 a.m.-3 p.m. at TMC Helix Park. Register here.

Rice Alliance Energy Tech Venture Forum

Hear from clean energy startups from nine countries and 19 states at the 22nd annual Energy Tech Venture Forum. The 12 companies that were named to Class 5 of the Rice Alliance Clean Energy Accelerator will present during Demo Day to wrap up their 10-week program. Apart from pitches, this event will also host keynotes from Arjun Murti, partner of energy macro and policy at Veriten, and Susan Schofer, partner at HAX and chief science officer at SOSV. Panels will focus on corporate innovation and institutional venture capital.

This event is Thursday, Sept. 18, from 7:30 a.m.-5 p.m. at Rice University’s Jones Graduate School of Business. Register here.

Shell STCH Open House

Get a behind-the-scenes look at how Shell is leveraging open innovation to scale climate tech. The open house will spotlight two Houston-based startups—Mars Materials, which converts captured CO2 into acrylonitrile, and DexMat, which transforms methane into high-performance carbon nanotube fibers.

This event is Thursday, Sept. 18, from 8:30 a.m.-12:15 p.m. at Shell Technology Center. Register here.

ACCEL Year 3 Showcase

Celebrate Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, an accelerator program for startups led by BIPOC and other underrepresented founders from Greentown Labs and Browning the Green Space. Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group. Hear startup pitches from the cohort, and from Greentown's Head of Houston, Lawson Gow, CEO Georgina Campbell Flatter and others.

This event is Thursday, Sept. 18, from 5-8 p.m. at Greentown Labs. Get tickets here.

Halliburton Labs Finalists Pitch Day

Hear from Halliburton Labs' latest cohort of entrepreneurs. The incubator aims to advance the companies’ commercialization with support from Halliburton's network, facilities and financing opportunities. Its latest cohort includes one company from Texas.

This event is Friday, Sept. 19, from 8 a.m.-noon at The Ion. Register here.

Chevron Energy Innovation Finals

The University of Houston will present the 4th Annual Chevron Innovation Commercialization Competition.

The event is Friday, Sept. 19, from 10 a.m.-1:30 p.m. at the University of Houston. Register here.

Houston Energy and Climate Startup Week was founded in 2024 by Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Houston Energy Transition Initiative (HETI), Digital Wildcatters and Activate.

Last year, Houston Energy and Climate Startup Week welcomed more than 2,000 attendees, investors and industry leaders to more than 30 events. It featured more than 100 speakers and showcased more than 125 startups.