Breaker19 is an Uber-like truck booking platform founded by two Houstonians. Photo by Marcin Jozwiak/Pexels

In a world where ”the customer is always right," two Houston founders have followed that rule right to their next venture.

Breaker19 — a groundbreaking mobile application built in late 2023 to be an efficient oilfield trucking and hotshot marketplace — was co-founded by Rodney Giles and Tyler Cherry. The native Houstonians also co-founded BidOut, a leading Oil & Gas procurement platform in 2021.

“About a year ago, one of our BidOut clients, a large operator, came to us and basically said that the biggest problem they have in the oil field is ordering trucks,” remembers Giles. “From there, they asked would we be willing to build something similar to Uber, but for oilfield logistics and trucking? So, we built Breaker19.”

After their customer presented a challenge, Giles and Cherry got to work. They envisioned the technical architecture almost immediately and assembled a team of software engineers to build an in-house application in less than a year.

“We launched Breaker19 in November 2023, and my goodness, it has taken off like crazy,” says Giles. “It is growing incredibly fast. We’re doing hundreds of truckloads a day now, all throughout West Texas, South Texas, North Dakota, really all over the U.S.”

Now, armed with such large publicly traded companies as British Petroleum, Breakout19 has a network of more than 1,500 trucks similar to transportation companies like Uber, where drivers make themselves available to be dispatched according to their health, safety and environmental requirements.

Breaker19 is doing so well, in fact, that it’s sped past Giles and Cherry’s original collaboration, BidOut.

“Breaker 19's probably, you know, growing ten times of where BidOut even was in its early days,” says Giles. “So, we'll always explore options that make sense for our shareholders. Fortunately, my co-founder and I have previous companies that we built and sold and have experience in scaling and have experiences in multiple departments, whether it be finance or sales or marketing or operations.

“So, currently, we do operate BidOut and Breaker19 separately, but they are, you know, through common operating structures. And, you know, we're able to maintain the scale and maintain the growth right now. And right now, the company is doing great financially and has cash flow positives. So, for us, you know, our goal is just to continue. I feel like we've kind of solved an archaic problem and did it in a really simple way, and it's working out pretty well.”

And it all started with a simple question from a customer — "Hey, can you guys come up with something like this?"

“It all came together just by listening to our customer’s needs,” says Giles. “And we always try to go into our clients and help them with a lot of what they do. But we always want to know about what their other pain points are. You know, there's still people, you know, that are operating with very archaic processes, very, you know, manual back-office processes. And our job is to speed them up with software. And so Breaker19 was able to do that.”

Practically speaking, Breaker19 is more than a software solution. It also closes the gap between qualified drivers and end clients by vetting participants for the platform in an efficient and pragmatic fashion.

“We have a very rigorous vetting process for the drivers,” Giles explains. “I mean, that's really what makes the oil and gas trucking industry so unique. Insurance requirements have to be significantly higher than most carriers. They have to go through very well-funded safety trainings where they are familiar with the oil field. And then number three, these drivers have to have personal protective equipment. They have to have flame-retardant clothing, they have to have slo-mo boots and they have to have hard hats.”

Procedure is important, but professionalism is equally important to Breaker19.

“You know, we do not allow the carrier to show up on a customer's locations in shorts and flip-flops or Crocs and, you know, be protected,” says Giles. “And so, for what we're dealing with is very mission critical, but also very, you know, very high-risk.

“For example, we are checking insurance statuses four times a day. If a carrier were to cancel their insurance, we're aware of it immediately because we want to make sure that we always have active insurance in place. So, we have a process that these carriers go through. Again, we've got over 1,500 of them now that are well-vetted and well-qualified.”

As Breaker19 continues to scale, Giles and Cherry hope their burgeoning app becomes the go-to ordering platform for the entire oil and gas industry for all of their trucking, hot shot and transportation needs.

“We're bringing on some significant, large enterprise clients right now that make up 10% of the U.S. market share for each customer,” says Giles “So I think when we start to compound those, I think we easily see the trajectory there as really being something that's taking off pretty fast. So, I think at the end of the day, we just hope to keep delivering a great experience for our clients, make their ordering process easy.”

With both BidOut and Breaker19 doing great financially, proud Klein Oak High School alums Giles and Cherry have purchased a steer to support Texas youth and agricultural causes. Additionally, moving forward, the duo pledges to give away a full steer each month to a customer of their Breaker19 platform.

"We are passionate about giving back to our community and nurturing the next generation of leaders in Texas," says Cherry. "Having personally experienced the transformative impact of FFA, we saw this initiative as a meaningful way to both support local agriculture and provide our clients with a taste of authentic Texas beef.”

———

This article originally ran on InnovationMap.

Two startups have recently announced support from Houston-based Chevron Technology Ventures. Photo via Getty Images

Chevron supports 2 carbon emissions tech startups

making moves

Chevron Technology Ventures has added two startups to its portfolio — one to its startup accelerator and one via an investment.

Delaware-based Compact Membrane Systems closed an oversubscribed series A funding round of $16.5 million led by Pangaea Ventures. CTV also contributed to the round, along with GC Ventures, Solvay Ventures, and Technip Energies.

CMS's technology is targeting carbon capture in traditionally hard-to-abate sectors, such as steel, cement, etc., which represent more than a tenth of worldwide emissions. The CMS platform, which operates in a 10,000-square-foot lab and manufacturing facility in Delaware, is a fully electrified and low-cost solution.

“We are delighted to have secured such a strong group of investors who share our vision for delivering a revolutionary carbon capture technology for industrial applications,” says Erica Nemser, CEO of Compact Membrane Systems, in a news release. “This oversubscribed funding round catalyzes our ability to deliver large projects. Deployment of our commercial systems by 2026 will have measurable environmental and economic benefits to our customers and society.”

It's the latest investment from CTV's $300 million Future Energy Fund II, which specifically "focuses on industrial decarbonization, emerging mobility, energy decentralization, and the growing circular economy," says Jim Gable, vice president of innovation at Chevron and president of CTV.

“The technology that CMS has developed has the potential to drive further efficiencies and cost reduction along the CCUS value chain, supporting decarbonization of hard-to-abate sectors and complementing our existing portfolio of investments in this space,” Gable says in the release.

The company is planning to use its new funding to further develop and commercialize its product by 2026.

Another startup has announced support from Chevron last month. Calgary, Alberta-based Arolytics Inc. announced last month that its been accepted into CTV's Catalyst Program. The company has an emissions software and data analytics platform for the oil and gas sector, and the program will help it further develop and deploy its technology.

"Being selected for the Catalyst Program is an amazing opportunity for Arolytics," says Liz O'Connell, CEO of Arolytics, in a news release. "The interest from Chevron demonstrates the oil and gas industry's desire to reduce emissions. It aligns closely with Arolytics' mission to build and execute efficient emissions management programs that enable industry to become leaders in emissions management."

Arolytics' technology, which includes AroViz, an emissions management software, and AroFEMP, an emissions forecasting model, targets methane emissions specifically, per the release.

Launched in 2017, the CTV Catalyst Program accelerates early-stage companies that are working on innovations within the energy industry. Arolytics will use the program to make key connections, identify important use cases, and expand into the U.S. Market.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston renewables developer lands $85M for nationwide solar projects

fresh funding

Houston-based Catalyze, a developer of independent power systems, announced it has secured an $85 million tax equity investment from RBC Community Investments.

“RBC’s investment in this portfolio demonstrates our commitment to advancing clean energy solutions within local communities,” Jonathan Cheng, managing director at RBC, said in a news release. “We are excited to partner with Catalyze on the strategic deployment of these and future projects.”

The financing will go toward the construction and completion of 75 megawatts of commercial and industrial solar projects nationwide in 2025. Catalyze’s current generation portfolio now totals 300 megawatts of projects in operations and construction.

The transaction will help Catalyze’s existing relationship with RBC, which demonstrates a commitment to advancing renewable energy solutions at scale.

“RBC is a valued financing partner, and we are pleased to further expand our relationship with this latest investment,” Jared Haines, CEO of Catalyze, said in a news release. “This financing enables us to further our mission to bring scalable distributed generation projects to businesses and communities nationwide.”

Catalyze also has other private equity sponsors in EnCap Investments and Actis.

Last May, Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79-megawatt portfolio of community distributed generation solar projects across New York state.

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.