Dr. Faisal N. Masud, medical director of critical care at Houston Methodist and a champion for sustainability efforts. Courtesy photo

Every industry can play a role in the energy transition, and Houston Methodist is leading the charge in the health care sector.

Culminating at this week’s inaugural Green ICU Conference, part of Houston Energy and Climate Startup Week, the health care system has spent the last three years taking a closer look at its environmental footprint—and showing other hospital systems and medical organizations how they too can make simple changes to reduce emissions.

The event, held tomorrow, Sept. 17, at TMC Helix Park, will bring together health care professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

In an interview with EnergyCapital, Dr. Faisal N. Masud, medical director of critical care at Houston Methodist and a champion for sustainability efforts across the system, shares the inspiration behind the event and what attendees can expect to take away.

Tell us about how the Green ICU Conference came to be.

Houston Methodist’s inaugural Green ICU conference is about three years in the making. It originated because Houston Methodist recognized the significant impact health care has on sustainability and the lack of similar initiatives in the U.S.

The Center for Critical Care at Houston Methodist launched a sustainability-focused ICU initiative, published a roadmap and became involved in international efforts to develop guidelines that many other organizations now use. Our work led to the creation of the first Green ICU Collaborative in the country, and the Green ICU Conference was established to share best practices and address the global impact of critical care on the environment.

What were some of the biggest takeaways from the collaborative, and how are they represented in this new event?

Through the Green ICU Collaborative, we’ve seen that health care professionals can make a significant impact on sustainability through simple, practical changes, and many solutions can be implemented without major costs or compromising patient care. Additionally, there’s a strong link between environmental stewardship and patient safety and quality. These lessons will be represented in the new Green ICU Conference by showcasing easy-to-adopt best practices, emphasizing the importance of sustainability in daily health care operations, and fostering a sense of shared responsibility among attendees to improve both patient outcomes and environmental impact.

Why are ICUs considered to be such carbon hot spots?

ICUs are considered carbon hot spots because they care for the sickest patients, requiring intensive therapies, numerous medications and a large amount of equipment, such as ventilators and pumps. This makes them the most resource- and energy-intensive areas in a hospital. A single day in the ICU can have a greenhouse gas impact equivalent to driving a car 1,000 kilometers.

The U.S. health care sector is responsible for approximately 8.5 percent of greenhouse gas emissions, and hospitals are the second-most energy-intensive commercial buildings in the country. With the Texas Medical Center being in the heart of Houston, it’s critical that health care organizations play a role in this area.

That’s why the Center for Critical Care launched a system-wide Green ICU Initiative with the Houston Methodist Office of Sustainability to help reduce our carbon impact and waste while continuing to provide unparalleled patient care. Innovation is part of our culture, and that extends into our sustainability efforts. Houston Methodist’s Green ICU initiative is the first-of-its-kind in the U.S.

What efforts has Houston Methodist taken to cut emissions?

The first step to cutting emissions is measuring an organization’s carbon footprint to determine the best path forward. Houston Methodist’s Office of Sustainability has aggregated two years of baseline emissions data pending third-party validation. The hospital has taken several steps to cut emissions, including implementing composting programs, installing solar panels, improving energy utilization and participating in global plastic recycling initiatives. These efforts are part of a broader commitment led by our Office of Sustainability to reduce the hospital’s environmental footprint.

Tell us a little more about the event. Who should attend? What do you expect to be some of the highlights?

The Green ICU Conference, taking place during Houston Energy and Climate Week, is focused on health care sustainability, bringing together health care professionals, engineers, experts and anyone interested in reducing health care’s environmental impact. With participants and speakers from six countries, the conference brings together leading experts who aim to raise awareness, share best practices and offer practical, easy-to-adopt solutions for making health care more sustainable.

Highlights include perspectives from leading voices in health care sustainability, real-world examples of successful sustainability initiatives and opportunities for networking and collaboration. Anyone interested in health care, sustainability,or making a positive impact in their community should consider attending.

And, because of increasing interest, we’ve opened up the opportunity for attendees to join virtually at no cost or in person.

What do you hope attendees take away? What are your major goals for the event?

The main goals of hosting the Green ICU Conference for the first time are to raise awareness about the environmental impact of health care; engage and empower attendees to implement easy, practical sustainability solutions; and foster a sense of shared community and responsibility.

I hope attendees leave the event feeling motivated and equipped to make meaningful changes in their own practices, whether that’s improving patient care, supporting their colleagues, or leaving their organization and environment in a better place for future generations.

Harris County commissioners approved a plan that seeks to address issues of ecology, infrastructure, economy, community and culture. Photo via Getty Images.

Harris County looks to future with new Climate Justice Plan

progress plan

Harris County commissioners approved a five-point Climate Justice Plan last month with a 3-1 vote by Harris County commissioners. The plan was created by the Office of County Administration’s Office of Sustainability and the nonprofit Coalition for Environment, Equity and Resilience.

“Climate action planning that centers on justice has the potential to spark innovative thinking and transformative actions that will lead to meaningful and just transitions in communities, policies, funding mechanisms, and implementation strategies,” the 59-page report reads.

The plan seeks to address issues relating to ecology, infrastructure, economy, community and culture. Here’s a breakdown:

Ecology

The plan will work towards clean air, water, and soil efforts that support the health of the environment, renewable energy that reduces greenhouse gases and pollution, and conservation and protection of our natural resources. Some action items include:

  • Increasing resources for local government agencies
  • Developing a free native seed bank at all libraries
  • Identifying partners and funding streams to reduce the costs of solar power for area households
  • Producing renewable energy on large tracts of land
  • Expanding tree planting by 20 percent
  • Providing tree maintenance and restoration efforts
  • Incentivizing gray water systems and filtration to conserve fresh water

Economy

In terms of the economy, the Climate Justice Plan wants the basic needs of the community met and wants to also incentivize resilience, sustainability, and climate solutions, and recycling and reuse methods. Specific actions include:

  • Quantifying the rising costs associated with climate change
  • Expanding resources and partnering with organizations to support programs that provide food, utility, housing, and direct cash assistance
  • Supporting a coalition of area non-profit organizations and county offices to strengthen social service support infrastructure
  • Supporting home repair, solar installation, and weatherization programs
  • Identify methods to expand free and efficient recycling and composting services
  • Creating a climate tax levied on greenhouse gas emissions to develop a climate fund to offset the impacts of pollution

Infrastructure

As Houston has been prone to hurricanes and flooding damage, the infrastructure portion of the plan aims to protect the region from risks through preventative floodplain and watershed management. Highlights include:

  • Investing in generators and solar power, plus battery backup and bidirectional EV charging for all county libraries
  • Providing more heating and cooling centers with charging stations
  • Coordinating and deploying community microgrids, especially in neighborhoods prone to losing power
  • Seeking partnerships and funding for low- or no-cost water purifiers for areas with the highest needs
  • Protecting the electric grid through regular maintenance and upgrading, and advocating for greater accountability and responsiveness among appointed officials
  • Developing regulations to require resilient power line infrastructure to prevent outages and failures in new developments

Community and Culture

Housing, a strong economy and access to affordable and healthy food will be achieved under the community aspect of the plan. Under culture, the plan seeks to share knowledge and build trust. Key goals include:

  • Developing a campaign to promote the use of the Harris County 311 system to identify critical community concerns
  • Supporting the development of a Community Housing Plan that ensures stable and safe housing
  • Advocating for revisions to Federal Emergency Management Agency (FEMA) disaster funding to account for renters’ losses and unmet housing needs
  • Developing and funding a whole-home program for repairs, weatherization, and solar energy
  • Developing culturally relevant public relations campaigns to increase knowledge of health, environment and biodiversity across generations
Read the full plan here.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.