Currently, methane leak detection requires human evaluation. With this innovative new company's tech, this process can be automated. Photo via Getty Images

A Houston startup that is developing a technology to detect methane leaks has moved on to phase two in Chevron's unique business accelerator.

Aquanta Vision Technologies, a Houston-based climate-tech startup, was selected to participate in the scale-up phase of Chevron Studio, a Houston program that matches entrepreneurs with technologies to turn them into businesses. Aquanta's computer vision software completely automates the identification of methane in optical gas imaging, or OGI. The technology originated from Colorado State University and CSU STRATA Technology Transfer.

Babur Ozden, a tech startup entrepreneur, along with Marcus Martinez, the lead inventor and Dan Zimmerle, co-inventor and director of METEC at CSU Energy Institute, came up with the technology to identify the presence and motion of methane in live video streams. Currently, this process of identifying methane requires a human camera operator to interpret the images. This can often be unreliable in the collection of emissions data.

Aquanta’s technology requires no human intervention and is universally compatible with all OGI cameras. Currently, only about 10 percent of the 20.5 million surveys done worldwide use this type of technology as it is extremely expensive to produce. Ozden said he hopes Aquanta will change that model.

“What we are doing — we are democratizing this feature, this capability, independent of the camera make and model,” Ozden tells EnergyCapital.

Aquanta’s software will be downloadable from App stores to the technician’s computers or phones.

“Our goal is to eliminate the absolute reliance of human interpretation and to give operators a chance to make detections faster and more accurately,” Ozden says.

“Our ultimate ambition is to reduce our footprint.” he continues. “Companies like Chevron and other leading players in the oil and gas industry are becoming much more committed (to reducing emissions)."

Babur Ozden is the founder of Aquanta Vision. Photo via LinkedIn

Aquanta will now test its software under various scenarios and develop an early commercial version of the product. In the next and final phase of the program, the company will begin marketing the technology for commercial use.

The goal of Chevron Studio is to take innovative new technologies out of the labs at universities and to scale them up to commercial ventures. The company takes the intellectual property developed at these labs and provides a platform to match entrepreneurs with the technology. The program provides funding to take the technologies from the very beginning to pilot and field trials. The National Renewable Energy Laboratory, or NREL, manages Chevron Studio and works closely with the entrepreneurs to guide them through the program.

Gautam Phanse, the strategic relations manager for Chevron Technology Ventures says he was impressed with Ozden’s background as an entrepreneur and in the technology he brought to the table.

“We are looking at experienced entrepreneurs. People who can take an idea and stand on their own and develop it into a business,” he tells EnergyCapital.

Earlier this year, Phanse spoke to InnovationMap about Chevron Studio and its mission to match entrepreneurs with promising technologies coming out of universities and labs. He said the current focus areas for Chevron Studio are: carbon utilization, hydrogen and renewable energy, energy storage systems and solutions for circular economy.

Gautam Phanse of Chevron Technology Ventures answers questions about this unique program. Photo courtesy

Q&A: Chevron's unique clean energy studio role in Houston entrepreneur community

matchmaking innovation

A new program from Houston-based Chevron Technology Ventures is rethinking how best to commercialize research-based technology.

This spring, Chevron Studio announced its second cohort of its program that matches entrepreneurs with promising technologies coming out of universities and labs. The overall goal of the studio — a collaboration between Chevron and the National Renewable Energy Laboratory, or NREL — is to scale up and commercialize early-stage technologies that have the potential to impact the future of energy.

Once selected, there are three phases of the program. After the entrepreneur applications closed in March, the first step was matching the selected entrepreneurs with the inventors of the selected intellectual properties, which will occurs over three to four months. The next phase includes scaling up the product — something that will take one to two years, depending on the tech. The last step would be a trial or a pilot program that includes rolling out a minimum viable product at commercial scale at Chevron or an affiliate. The next cohort application period will open next month.

Gautam Phanse is the strategic relationship manager for Chevron Technology Ventures. He joins InnovationMap for a Q&A to explain more about the opportunity.

What types of technologies is Chevron looking to bring into commercialization through this program? How is the program different from existing accelerators/incubators/etc.?

Gautam Phanse: Chevron Technology Ventures brings external innovation to Chevron. Key focus areas for CTV are industrial decarbonization, emerging mobility, energy decentralization, and the growing circular carbon economy. Chevron Studio is one of the tools to achieve this goal. The current focus areas for Chevron Studio are: carbon utilization, hydrogen and renewable energy, energy storage systems, and solutions for circular economy. These focus areas will be reviewed every year and additional areas could be brought into the mix.

The goal of Chevron Studio is to scale up and commercialize technology developed in the Universities and National Labs. We curate the intellectual property developed at universities and national labs and provide a platform to match entrepreneurs with the IP. The program provides seed funding and a pathway through incubation, pilot and field trials to scale up the technologies. The uniqueness of this program is its target and the breadth of its scope — all the way from incubation to field trials.

How does Chevron Technology Ventures and the National Renewable Energy Laboratory collaborate on this project? What role does each entity play?

GP: CTV has a long history of supporting innovation and the startup community. And over the years we’ve seen the consistent gaps and the struggles that the startup companies have in scaling up technologies. We also have a long history of working with national labs and universities and have seen the challenges in getting these technologies out of the labs. The idea for Chevron Studio grew out of these challenges.

NREL’s Innovation and Entrepreneurship Center manages Chevron Studio, working closing with entrepreneurs and guiding them through the program while leveraging capabilities at the lab and activating the IEC’s network of cleantech startups, investors, foundations, and industry partners.

What are you looking for from the entrepreneur applicants? Who should apply?

GP: We are looking for entrepreneurs who are seeking their next opportunity. They should have a passion in lower carbon solutions and the patience to work on early-stage technologies to see them through scale up and commercialization. Aspiring entrepreneurs with demonstrated passion are also welcome to apply. The entrepreneurs are expected to build a team, raise funds and grow the business providing competitive solutions to the industry.

Tell me about cohort 1. How did it go and what were the participants able to accomplish?

GP: We were really excited about the response we got from both the entrepreneur community and the universities and national labs. We had a strong pool of entrepreneurs and a great mix of IP and frankly had a tough time making the selection. The first cohort had four entrepreneurs in the initial discovery phase. Some of them have now graduated, and we will be announcing the participants in the next phase — for scaling up — shortly.

------

This conversation has been edited for brevity and clarity. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.

ExxonMobil pauses plans for $7B hydrogen plant in Baytown

project on pause

As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.