Currently, methane leak detection requires human evaluation. With this innovative new company's tech, this process can be automated. Photo via Getty Images

A Houston startup that is developing a technology to detect methane leaks has moved on to phase two in Chevron's unique business accelerator.

Aquanta Vision Technologies, a Houston-based climate-tech startup, was selected to participate in the scale-up phase of Chevron Studio, a Houston program that matches entrepreneurs with technologies to turn them into businesses. Aquanta's computer vision software completely automates the identification of methane in optical gas imaging, or OGI. The technology originated from Colorado State University and CSU STRATA Technology Transfer.

Babur Ozden, a tech startup entrepreneur, along with Marcus Martinez, the lead inventor and Dan Zimmerle, co-inventor and director of METEC at CSU Energy Institute, came up with the technology to identify the presence and motion of methane in live video streams. Currently, this process of identifying methane requires a human camera operator to interpret the images. This can often be unreliable in the collection of emissions data.

Aquanta’s technology requires no human intervention and is universally compatible with all OGI cameras. Currently, only about 10 percent of the 20.5 million surveys done worldwide use this type of technology as it is extremely expensive to produce. Ozden said he hopes Aquanta will change that model.

“What we are doing — we are democratizing this feature, this capability, independent of the camera make and model,” Ozden tells EnergyCapital.

Aquanta’s software will be downloadable from App stores to the technician’s computers or phones.

“Our goal is to eliminate the absolute reliance of human interpretation and to give operators a chance to make detections faster and more accurately,” Ozden says.

“Our ultimate ambition is to reduce our footprint.” he continues. “Companies like Chevron and other leading players in the oil and gas industry are becoming much more committed (to reducing emissions)."

Babur Ozden is the founder of Aquanta Vision. Photo via LinkedIn

Aquanta will now test its software under various scenarios and develop an early commercial version of the product. In the next and final phase of the program, the company will begin marketing the technology for commercial use.

The goal of Chevron Studio is to take innovative new technologies out of the labs at universities and to scale them up to commercial ventures. The company takes the intellectual property developed at these labs and provides a platform to match entrepreneurs with the technology. The program provides funding to take the technologies from the very beginning to pilot and field trials. The National Renewable Energy Laboratory, or NREL, manages Chevron Studio and works closely with the entrepreneurs to guide them through the program.

Gautam Phanse, the strategic relations manager for Chevron Technology Ventures says he was impressed with Ozden’s background as an entrepreneur and in the technology he brought to the table.

“We are looking at experienced entrepreneurs. People who can take an idea and stand on their own and develop it into a business,” he tells EnergyCapital.

Earlier this year, Phanse spoke to InnovationMap about Chevron Studio and its mission to match entrepreneurs with promising technologies coming out of universities and labs. He said the current focus areas for Chevron Studio are: carbon utilization, hydrogen and renewable energy, energy storage systems and solutions for circular economy.

Gautam Phanse of Chevron Technology Ventures answers questions about this unique program. Photo courtesy

Q&A: Chevron's unique clean energy studio role in Houston entrepreneur community

matchmaking innovation

A new program from Houston-based Chevron Technology Ventures is rethinking how best to commercialize research-based technology.

This spring, Chevron Studio announced its second cohort of its program that matches entrepreneurs with promising technologies coming out of universities and labs. The overall goal of the studio — a collaboration between Chevron and the National Renewable Energy Laboratory, or NREL — is to scale up and commercialize early-stage technologies that have the potential to impact the future of energy.

Once selected, there are three phases of the program. After the entrepreneur applications closed in March, the first step was matching the selected entrepreneurs with the inventors of the selected intellectual properties, which will occurs over three to four months. The next phase includes scaling up the product — something that will take one to two years, depending on the tech. The last step would be a trial or a pilot program that includes rolling out a minimum viable product at commercial scale at Chevron or an affiliate. The next cohort application period will open next month.

Gautam Phanse is the strategic relationship manager for Chevron Technology Ventures. He joins InnovationMap for a Q&A to explain more about the opportunity.

What types of technologies is Chevron looking to bring into commercialization through this program? How is the program different from existing accelerators/incubators/etc.?

Gautam Phanse: Chevron Technology Ventures brings external innovation to Chevron. Key focus areas for CTV are industrial decarbonization, emerging mobility, energy decentralization, and the growing circular carbon economy. Chevron Studio is one of the tools to achieve this goal. The current focus areas for Chevron Studio are: carbon utilization, hydrogen and renewable energy, energy storage systems, and solutions for circular economy. These focus areas will be reviewed every year and additional areas could be brought into the mix.

The goal of Chevron Studio is to scale up and commercialize technology developed in the Universities and National Labs. We curate the intellectual property developed at universities and national labs and provide a platform to match entrepreneurs with the IP. The program provides seed funding and a pathway through incubation, pilot and field trials to scale up the technologies. The uniqueness of this program is its target and the breadth of its scope — all the way from incubation to field trials.

How does Chevron Technology Ventures and the National Renewable Energy Laboratory collaborate on this project? What role does each entity play?

GP: CTV has a long history of supporting innovation and the startup community. And over the years we’ve seen the consistent gaps and the struggles that the startup companies have in scaling up technologies. We also have a long history of working with national labs and universities and have seen the challenges in getting these technologies out of the labs. The idea for Chevron Studio grew out of these challenges.

NREL’s Innovation and Entrepreneurship Center manages Chevron Studio, working closing with entrepreneurs and guiding them through the program while leveraging capabilities at the lab and activating the IEC’s network of cleantech startups, investors, foundations, and industry partners.

What are you looking for from the entrepreneur applicants? Who should apply?

GP: We are looking for entrepreneurs who are seeking their next opportunity. They should have a passion in lower carbon solutions and the patience to work on early-stage technologies to see them through scale up and commercialization. Aspiring entrepreneurs with demonstrated passion are also welcome to apply. The entrepreneurs are expected to build a team, raise funds and grow the business providing competitive solutions to the industry.

Tell me about cohort 1. How did it go and what were the participants able to accomplish?

GP: We were really excited about the response we got from both the entrepreneur community and the universities and national labs. We had a strong pool of entrepreneurs and a great mix of IP and frankly had a tough time making the selection. The first cohort had four entrepreneurs in the initial discovery phase. Some of them have now graduated, and we will be announcing the participants in the next phase — for scaling up — shortly.

------

This conversation has been edited for brevity and clarity. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston maritime startup raises $43M to electrify cargo vessels

A Houston-based maritime technology company that is working to reduce emissions in the cargo and shipping industry has raised VC funding and opened a new Houston headquarters.

Fleetzero announced that it closed a $43 million Series A financing round this month led by Obvious Ventures with participation from Maersk Growth, Breakthrough Energy Ventures, 8090 Industries, Y Combinator, Shorewind, Benson Capital and others. The funding will go toward expanding manufacturing of its Leviathan hybrid and electric marine propulsion system, according to a news release.

The technology is optimized for high-energy and zero-emission operation of large vessels. It uses EV technology but is built for maritime environments and can be used on new or existing ships with hybrid or all-electric functions, according to Fleetzero's website. The propulsion system was retrofitted and tested on Fleetzero’s test ship, the Pacific Joule, and has been deployed globally on commercial vessels.

Fleetzero is also developing unmanned cargo vessel technology.

"Fleetzero is making robotic ships a reality today. The team is moving us from dirty, dangerous, and expensive to clean, safe, and cost-effective. It's like watching the future today," Andrew Beebe, managing director at Obvious Ventures, said in the news release. "We backed the team because they are mariners and engineers, know the industry deeply, and are scaling with real ships and customers, not just renderings."

Fleetzero also announced that it has opened a new manufacturing and research and development facility, which will serve as the company's new headquarters. The facility features a marine robotics and autonomy lab, a marine propulsion R&D center and a production line with a capacity of 300 megawatt-hours per year. The company reports that it plans to increase production to three gigawatt-hours per year over the next five years.

"Houston has the people who know how to build and operate big hardware–ships, rigs, refineries and power systems," Mike Carter, co-founder and COO of Fleetzero, added in the release. "We're pairing that industrial DNA with modern batteries, autonomy, and software to bring back shipbuilding to the U.S."