Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo by Sergei A/Pexels

A Houston startup with clean tech originating out of NASA has secured millions in funding.

Helix Earth Technologies closed an oversubscribed $5.6 million seed funding led by Houston-based research and investment firm Veriten. Anthropocene Ventures, Semilla Capital, and others including individual investors also participated in the round.

“This investment will empower the Helix Earth team to accelerate the development and deployment of our first groundbreaking hardware technology designed to disrupt a significant portion of the commercial air conditioning market, an industry that is ready for innovation,” Rawand Rasheed, Helix Earth co-founder and CEO, says in a news release.

Helix Earth was founded based on NASA technology co-invented by Rasheed and spun out of Rice University and has been incubated at Greentown Labs in Houston since 2022. Currently being piloted, the technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators.

“The enthusiastic response from investors reinforces our team’s confidence in our ability to transform innovation-starved sectors such as commercial air conditioning with an easy-to-install-and-maintain solution that benefits distributors, mechanical contractors, and most of all, building owners, with a positive benefit to the environment,” Rasheed says.

Prior to its raise, the company received grant funding from the National Science Foundation and the United States Department of Energy.

“We couldn’t be more excited to partner with the Helix Earth team," Maynard Holt, Veriten’s founder and CEO, adds. "We were so impressed with their unique combination of a technology with broad applicability across multiple industries, a product that will have an immediate and measurable impact on our energy system, and a fantastic and well-rounded team.”

Helix Earth, per the release, reports that is also looking to provide solutions for commercial humidity control and carbon capture.

———

This article originally ran on InnovationMap.

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

Podcast: Houston energy tech leader on breaking down industry silos, sustainable digitization

listen now

Ken Nguyen oversees the implementation of new technologies at bp, which has its United States headquarters in Houston, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says on the Houston Innovators Podcast.

According to Nguyen, principal technical program manager at bp, the company has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

Recently, in order to explore innovation within these technology verticals, bp and NASA entered into a Space Act Agreement with NASA.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Nguyen says. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

The agreement will enable bp and NASA to collaborate on an array of technologies. Photo courtesy of bp

NASA, bp team up to share digital tech, expertise with new agreement

collaboration station

Houston-based energy company bp America is helping NASA boost U.S. space exploration efforts.

Under an agreement signed August 7, bp and NASA will share digital technology and technical expertise developed over several decades. The energy company says the deal will help advance energy production on earth, and will help advance exploration of the moon, Mars, and other planets.

For example, the agreement will enable bp and NASA to collaborate on an array of technologies. This includes digital models and simulations that let engineers and scientists visualize equipment in remote locations more than 7,000 feet underwater or millions of miles away on another planet.

The bp-NASA partnership evolved thanks to the Space Act Agreement. This agreement, part of the National Aeronautics and Space Act of 1958, allows NASA to work with companies, universities, and other entities to propel space exploration.

In a news release, Ken Nguyen, principal technical program manager at bp, says: “bp has built a proud legacy of technological innovation as we deliver the energy the world needs today while investing in the energy system of tomorrow. As NASA pursues a sustained presence on the moon and Mars, we see a unique opportunity for bp and NASA to work collaboratively on the forefront of digital technology that will cultivate further innovation in energy and space.”

Initially, bp and NASA will focus on developing standards, and expanding the capabilities of visualization and simulation models. Subsequent phases might include:

  • Exchanging practices surrounding safety, communication, artificial intelligence, and other aspects of remote operations.
  • Collaborating on renewable energy, such as hydrogen, solar, regenerative fuel cells, and high-capacity batteries.

“Both bp and NASA are custodians of deep technical expertise, working in extreme environments — whether that’s at the bottom of the ocean or on the moon,” says Giovanni Cristofoli, senior vice president of bp Solutions. “Sharing what we know with each other will help us solve complex engineering problems faster, meaning we can focus on keeping energy flowing safely and delivering higher margins with lower emissions.”

This won’t be the first time bp and NASA have teamed up. Offshore workers from bp have undergone underwater escape training at NASA's Neutral Buoyancy Laboratory, the astronaut training pool near Johnson Space Center. In addition, NASA has used bp’s Castrol lubricants for more than 60 years.

Venus Aerospace is one step closer to high-speed international travel. Photo courtesy Venus Aerospace

Houston startup with unique engine tech reports milestone testing results

high-speed travel

A Houston-headquartered hardtech company that's working on technology to enable hypersonic travel has announced a partnership with NASA to test its tech.

Venus Aerospace has partnered with NASA’s Marshall Space Flight Center in Huntsville, Alabama, on what is reportedly the longest sustained tests of a rotating detonation rocket engine, also known as an RDRE.

“Venus believes strongly in the performance step-change that RDREs bring for both hypersonic and space applications. The partnership with NASA has been key in maturing this new technology.” Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in a news release.

The company's engine injector, which used regeneratively-cooled RDRE architecture, was tested in a "flight-like manner," according to the company. The technology operated successfully for 4 minutes of hotfire testing — a significant improvement, as engine tests of this type last for only 1 to 2 seconds, according to Venus.

"This long-duration hotfire means RDRE’s have retired a major risk area and are able to move into the few remaining steps before a flight demonstration," reads the press release from Venus.

As Venus continues to develop its technology for research, defense, and commercial missions, it will continue to work with NASA, which is also looking into RDRE technology for lunar and martian landers, in-space operations and logistics, and other deep space missions, per the release, because RDREs are more compact, efficient, and versatile than traditional rocket engines.

"Venus has entered into a second-year contract with NASA to provide engine parts for research and development of NASA’s RDRE," the news release continues. "In year two, NASA, with Venus’s support, will test different propellant combinations on hardware, to operate at even higher thrust levels and to demonstrate efficiency gains promised by the detonation engine."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sarah "Sassie" Duggleby in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round.

———

This article originally ran on InnovationMap.

A new initiative from federal agencies hopes to enhance access to information about greenhouse gas emissions. Photo via nasa.gov

NASA, EPA share plans for greenhouse gas initiative at COP28

need some space

Two of Houston's top industries are in for a collaboration of sorts, according to a recent announcement at the 28th annual United Nations Climate Conference, or COP28.

NASA, the United States Environmental Protection Agency, and other U.S. agencies have unveiled the plans for the U.S. Greenhouse Gas Center, a hub for collaboration for the federal agencies and nonprofit and private sector partners.

“NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” NASA Administrator Bill Nelson says in a news release. “We’re bringing space to Earth to benefit communities across the country.”

NASA is taking the lead implementing agency position for the new center, which will be run by Argyro Kavvada, center program manager, who's based in NASA headquarters in Washington. The EPA, the National Institute of Standards and Technology, and the National Oceanic and Atmospheric Administration will also be involved and provide greenhouse gas datasets and analysis tools.

“A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” Kavvada says. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.”

The center’s data catalog will be available online and target three areas: greenhouse gas emissions from humans, naturally occurring greenhouse gas emissions, and large methane emission event identification and quantification from aircraft and space-based data.

According to the release, the center is one piece of the current administration's effort to amplify information on greenhouse gas emissions, as outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

Fervo Energy selects Baker Hughes to provide supply geothermal tech for power plants

geothermal deal

Houston-based geothermal energy startup Fervo Energy has tapped Houston-based energy technology company Baker Hughes to supply geothermal equipment for five Fervo power plants in Utah.

The equipment will be installed at Fervo’s Cape Station geothermal power project near Milford, Utah. The project’s five second-phase, 60-megawatt plants will generate about 400 megawatts of clean energy for the grid.

Financial terms of the deal weren’t disclosed.

“Baker Hughes’ expertise and technology are ideal complements to the ongoing progress at Cape Station, which has been under construction and successfully meeting project milestones for almost two years,” says Tim Latimer, co-founder and CEO of Fervo. “Fervo designed Cape Station to be a flagship development that's scalable, repeatable, and a proof point that geothermal is ready to become a major source of reliable, carbon-free power in the U.S.”

Cape Station is permitted to deliver about two gigawatts of geothermal power. The first phase of the project will supply 100 megawatts of power to the grid beginning in 2026. The second phase is scheduled to come online by 2028.

“Geothermal power is one of several renewable energy sources expanding globally and proving to be a vital contributor to advancing sustainable energy development,” Baker Hughes Chairman and CEO Lorenzo Simonelli says. “By working with a leader like Fervo Energy and leveraging our comprehensive portfolio of technology solutions, we are supporting the scaling of lower-carbon power solutions that are integral to meet growing global energy demand.”

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company has surpassed $1 billion. In March, Axios reported Fervo is targeting a $2 billion to $4 billion valuation in an IPO.

Over the course of eight years, Fervo has raised almost $1 billion in capital, including equity and debt financing. This summer, the company secured a $205.5 million round of capital.

Houston-area sustainable steel company emerges from stealth with $17M in VC funding

heavy metals

Conroe-based Hertha Metals, a producer of substantial steel, has hauled in more than $17 million in venture capital from Khosla Ventures, Breakthrough Energy Fellows, Pear VC, Clean Energy Ventures and other investors.

The money has been put toward the construction and the launch of its 1-metric-ton-per-day pilot plant in Conroe, where its breakthrough in steelmaking has been undergoing tests. The company uses a single-step process that it claims is cheaper, more energy-efficient and equally as scalable as conventional steelmaking methods. The plant is fueled by natural gas or hydrogen.

The company, founded in 2022, plans to break ground early next year on a new plant. The facility will be able to produce more than 9,000 metric tons of steel per year.

Hertha said in a news release that its process, which converts low-grade iron ore into molten steel or high-purity iron, “doesn’t just materially lower cost and energy use — it fundamentally expands our capacity to produce iron and steel at scale, by unlocking a wider range of iron ore feedstocks.”

Laureen Meroueh, founder and CEO of Hertha, says the company’s process will fill a gap in U.S. steel production.

“We’re not just reinventing steelmaking; we’re redefining what’s possible in materials, manufacturing, and national resilience,” Meroueh says.

Hertha says it’s in talks with magnet producers — which make permanent magnets and magnetic assemblies from raw materials such as iron — to become a U.S. supplier of high-purity iron. In its next stage of growth, Hertha will aim to operate at a capacity of 500,000 metric tons of steel production per year.

The company won the Department of Energy's Summer Energy Program for Innovation Clusters (EPIC) Startup Pitch Competition last summer. Read more here.