Time named its top innovations of the year — and two Houston-born energy transition inventions made the cut. Photo via Getty Images

Innovations from two Houston energy transition companies have been crowned among the top inventions of the year.

Time magazine’s "200 Best Inventions of 2024" identified top innovations across consumer goods, home health, robotics, sustainability, and two dozen other categories.

Fervo Energy, a provider of geothermal power, was recognized the Green Energy category for its FervoFlex system. As Time explains, the system enables horizontal drilling into hot rock under the earth’s surface and pumping in water to generate hot water and steam. The geothermal energy that’s produced can be stored and released for future use by Fervo customers.

Jack Norbeck, Fervo’s co-founder and chief technology officer, predicts that by 2050, geothermal energy will become “the backbone of the decarbonized energy system.”

In September, Fervo secured a $100 million bridge loan for the first phase of its ongoing Cape Station project in Utah, which is being touted as the world’s largest geothermal energy plant. Slated for completion in June 2026, this initial phase is expected to generate 90 megawatts of renewable energy. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

Time also lauded NanoTech Materials among its Manufacturing and Materials honorees for its Insulative Ceramic Particle. This powder can be added to materials like drywall or shingles to improve fire resistance and decrease heat penetration, according to Time. NanoTech’s Wildfire Shield coating for buildings contains the powder. Wildfire Shield prevents damage to materials and harm from noxious smoke.

NanoTech’s other product, Cool Roof Coat, is painted on a building to decrease HVAC use. This year, NanoTech moved into a 43,000-square-foot space in Katy, Texas, and brought on new partners that expanded the company's reach in the Middle East and Singapore.

A third Houston company was also praised byTime is BiVACOR — named to its Experimental category of the list. The full list of this year's top inventions is available online.

———

This article originally ran on InnovationMap.

Nearly 20 Houston startups and innovators were named finalists for the 2024 Houston Innovation Awards this week. Photo via Getty Images

Houston energy transition innovators named finalists for annual awards program

best of the rest

The Houston Innovation Awards have named its honorees for its 2024 awards event, and several clean energy innovators have made the cut.

The finalists, which were named on EnergyCapital's sister site InnovationMap this week, were decided by this year's judges after they reviewed over 130 applications. More 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

All of the honorees will be recognized at the event on November 14 and the winners will be named. Registration is open online.

Representing the energy industry, the startup finalists include:

  • Amperon, an AI platform powering the smart grid of the future, was named a finalist in the Energy Transition Business category.
  • ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms, was named a finalist in the Energy Transition Business and the AI/Data Science Business categories.
  • CLS Wind, a self-erection wind turbine tower system provider for the wind energy industry, was named a finalist in the Minority-Founded Business category.
  • Corrolytics, a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets, was named a finalist in the Minority-Founded Business and People's Choice: Startup of the Year categories.
  • Elementium Materials, a battery technology with liquid electrolyte solutions, was named a finalist in the Energy Transition Business category.
  • Enovate Ai, a provider of business and operational process optimization for decarbonization and energy independence, was named a finalist in the AI/Data Science Business category.
  • FluxWorks, developer and manufacturer of magnetic gears and magnetic gear-integrated motors, was named a finalist in the Deep Tech Business category.
  • Gold H2, a startup that's transforming depleted oil fields into hydrogen-producing assets utilizing existing infrastructure, was named a finalist in the Minority-Founded Business and the Deep Tech Business categories.
  • Hertha Metals, developer of a technology that cost-effectively produces steel with fewer carbon emissions, was named a finalist in the Deep Tech Business category.
  • InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals, was named a finalist in the Energy Transition Business and the People's Choice: Startup of the Year categories.
  • NanoTech Materials, a chemical manufacturer that integrates novel heat-control technology with thermal insulation, fireproofing, and cool roof coatings to drastically improve efficiency and safety, was named a finalist in the Scaleup of the Year category.
  • SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography, was named a finalist in the Energy Transition Business category.
  • Square Robot, an advanced robotics company serving the energy industry and beyond by providing submersible robots for storage tank inspections, was named a finalist in the Scaleup of the Year category.
  • Syzygy Plasmonics, a company that's decarbonizing chemical production with a light-powered reactor platform that electrifies the production of hydrogen, syngas, and fuel with reliable, low-cost solutions, was named a finalist in the Scaleup of the Year category.
  • TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions, was named a finalist in the Energy Transition Business category.
  • Voyager Portal, a software platform that helps commodity traders and manufacturers in the O&G, chemicals, agriculture, mining, and project cargo sectors optimize the voyage management lifecycle, was named a finalist in the AI/Data Science Business category.

In addition to the startup finalists, two energy transition-focused organizations were recognized in the Community Champion Organization category, honoring a corporation, nonprofit, university, or other organization that plays a major role in the Houston innovation community. The two finalists in that category are:

  • Energy Tech Nexus, a new global energy and carbon tech hub focusing on hard tech solutions that provides mentor, accelerator and educational programs for entrepreneurs and underserved communities.
  • Greentown Houston, a climatetech incubator and convener for the energy transition community that provides community engagement and programming in partnership with corporations and other organizations.

Lastly, a few energy transition innovators were honored in the individual categories, including Carlos Estrada, growth partner at First Bight Ventures and head of venture acceleration at BioWell; Juliana Garaizar, founding partner of Energy Tech Nexus; and Neal Dikeman, partner at Energy Transition Ventures.

NanoTech is targeting new overseas markets for its energy efficiency products. Photo via Getty Images

Promising Houston startup expands energy efficiency product to Middle East, Singapore

big move

NanoTech Materials has announced a big expansion for its business.

The Houston company, which created a roof coating using nanotechnology that optimizes energy efficiency, has partnered with Terminal Subsea Solutions Marine Service SP to bring its products to the Gulf Cooperation Council and Singapore. TSSM will become a partner of Houston’s NanoTech Materials products, which will include the Cool Roof Coat, Vehicular Coat, and Insulative Coat for the GCC countries and Singapore.

NanoTech Materials technology that ranges from roof coatings on mid- to low-rise buildings to shipping container insulation to coating trucks and transportation vehicles will be utilized by TSSM in the partnership. NanoTech’s efforts are focused on heat mitigation that can reduce energy costs, enhance worker safety, and minimize business risks in the process.

“Businesses and communities within the GCC and Singapore feel the impact of extreme temperatures and longer Summers more acutely than any other region in the world,” Mike Francis, CEO of NanoTech Materials, says in a news release. “We have an opportunity to make a real impact here through reduced energy load, cooler and safer working conditions, and a reduced carbon emissions output from the hottest, driest place on earth. We are incredibly excited to be partnering with our colleagues at TSSM to bring this powerful technology to the region.”

One of the areas that will benefit from this collaboration is the Middle East. The GCC region is characterized by a desert climate, which has average annual temperature reaching 107.6°F and summer peaks climbing as high as 130°F. The effects of these extreme conditions can be dangerous for workers especially with strict labor laws mandating midday work bans under black flag conditions, which can result in productivity losses as well.

NanoTech’s proprietary technology, the Insulative Ceramic Particle (ICP), will be used to address challenges in energy efficiency and heat control in the logistics and built environment sector. The platform can be integrated into many applications, and the impact can range from reducing greenhouse gas emissions to protecting communities that are wildfire-prone. The core of the technology has a lower conductivity than aerogels. It also has a “near-perfect emissivity score” according to the company. The NanoTech ICP is integrated with base matrix carriers; building materials, coatings, and substrates, which gives the materials heat conservation, rejection, or containment properties.

By combining the ICP into an acrylic roof coating, NanoTech has created the Cool Roof Coat, which reflects sunlight and increases the material's heat resistance. This can lower indoor temperatures by 25 to 45°F in single-story buildings and reduce the carbon emissions of mid to low-rise buildings. This can potentially equal energy savings from 20 percent up to 50 percent, which would surpass the average 15 percent savings of traditional reflective only coatings.

“This technology will have a huge impact on supporting the region's aggressive climate initiatives, such as Saudi Arabia’s Green Initiative, aiming to reduce carbon emissions by 278 million tons annually by 2030,” Jameel Ahmed, managing director at TSSM, says in the release. “The regional efforts to enhance climate action and economic opportunities through substantial investments in green technologies and projects are evident, and we are proud to be offering a product that can make a difference.”

NanoTech says its coating maintains its effectiveness over time and doesn’t suffer UV degradation issues which are helpful, especially in extreme weather conditions workers and businesses face in regions like the Middle East.

With a new partnership, NanoTech is hoping to help cool off Arizona. Photo via nanotechmaterials.com

Houston eco-focused materials startup launches initiative in Arizona

stay cool

Home to a persistent dry heat, Arizona is a prime market for energy-reducing tools and technologies — and one Houston company is jumping on the opportunity.

NanoTech Materials, which created the Cool Roof Coat that can extend a building's roof lifespan and reduce energy costs by seven to 15 percent, has announced a joint campaign with Cool Roof Coating Systems, a subsidiary of Tesson Roofing. Cool Roof Coating Systems will provide the installation of NanoTech's product, which is available nationwide.

"NanoTech products are designed to provide extraordinary heat rejection, and the team at Tesson is among the very best in the roof restoration market, which made a joint initiative in the extreme heat and intense Arizona sun a natural fit," Mike Francis, CEO and founder at NanoTech Materials, says in a news release. "As a direct-to-installer product, we rely on collaboration with highly qualified contractors. I am delighted at the founding of Cool Roof Coating Systems to bring a new level of sustainability to Arizona.

"Our vision at NanoTech is to transform sustainability in the built environment, starting with one of the biggest energy drains and sources of carbon emissions, one roof at a time," he adds.

The elastic, polymeric roof remediation solution is able to cut internal temperatures by 25°F to 30°F, which can be responsible for cutting carbon emissions by 76 tons annually in a 25,000-square-foot building, according to the company.

"Put simply, the heat-rejection performance of NanoTech Cool Roof Coat is so compelling that Tesson decided to form an Arizona-based company to tackle one of the hottest markets in the U.S. directly," Brett Tesson, president at Cool Roof Coating Systems, says in the release. "During my two decades in the roofing industry, NanoTech Cool Roof Coat is by far the most game-changing product for the roof restoration business because it allows us to coat, waterproof and protect, while adding unprecedented savings in HVAC cooling for our customers."

Last summer, NanoTech announced an oversubscribed funding round that brought onboard a handful of new investors. The details of the round were not disclosed, but the round was raised to help the company continue to roll out its product nationally.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.