Renewable Parts, an independent supply chain solutions for the wind industry that works with remanufactured and refurbished products, announced that its North American operations will be based in Humble. Photo courtesy of Renewable Parts

A Scottish company has chosen a Houston suburb as its home for North American operations.

Renewable Parts, an independent supply chain solutions for the wind industry that works with remanufactured and refurbished products, announced that its North American operations will be based in Humble. The new office will host the parts recirculation workshop to service the North American market.

"Being close to Houston was important for us as a business. Texas has a thriving wind industry and an abundance of turbines that we have vast experience on," CEO Michael Forbes says in a news release, "And Houston is widely considered the Energy Capital of the World — a great opportunity for us to find good people and collaborate with some of the many great business that are located there.

"We were also helped through the process of establishing our new venture by the Greater Houston Partnership, who gave us a warm welcome and connected us with many of the people who have gone on to play a part in the business set-up, from finding a location to supporting us with the legal side of things," he continues.

For over a decade, Renewable Parts successfully has been recirculating wind turbine component parts at scale for service providers, turbine operators and even turbine OEMs.

Craig Rhodes, senior vice president of economic development for the Greater Houston Partnership hopes the new location will help boost the local economy.

"Renewable Parts' decision to establish their North American operations in Humble, Texas, is further testament to the Houston region's strong infrastructure, skilled workforce and unmatched industry expertise,” Rhodes says in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston cleantech company expands into China with hydrogen energy pilot

going global

Hydrogen-based clean energy technology company HNO International has announced its first foray into the Chinese market.

The company, which is building a state-of-the-art hydrogen production and refueling facility in Katy, has entered into an agreement with renewable energy company Zhuhai Topower New Energy Co., according to a release. This initiative includes a pilot deployment of HNOI’s Scalable Hydrogen Energy Platform, or SHEP, in China.

“Partnering with Zhuhai Topower represents a significant milestone in our mission to expand the global reach of our hydrogen production and refueling solutions,” Don Owens, Chairman and CEO of HNO International, said in the news release.

The collaboration plans to use HNO’s innovative SHEP technology to install hundreds of low-cost modular hydrogen production and refueling infrastructure projects, according to the company. HNO’s SHEP hydrogen energy system is known to require less than 3,000 square feet of space to operate while producing 5,000 kilograms of hydrogen per day.

Both companies plan to set a precedent for scalable and sustainable energy solutions in China.

Zhuhai Topower has investments totaling $340.63 million in new energy holdings for power generation, including a 100-megawatt wind power project and a 50-megawatt photovoltaic power generation project.

“This collaboration not only underscores the versatility of our SHEP technology, but also aligns with our commitment to supporting sustainable energy initiatives worldwide,” Owens added in the news release.

Rice University and UH labs team up to improve emerging carbon capture technique

new findings

A team of researchers led by professors from two Houston universities has discovered new methods that help stabilize an emerging technique known as carbon dioxide reduction reaction, or CO2RR, that is used for carbon capture and utilization processes.

The team led by Rice University’s Haotian Wang, associate professor in chemical and biomolecular engineering, and Xiaonan Shan, associate professor of electrical and computer engineering at University of Houston, published its findings in a recent edition of the journal Nature Energy.

CO2RR is an emerging carbon capture and utilization technique where electricity and chemical catalysts are used to convert carbon dioxide gas into carbon-containing compounds like alcohols, ethylene, formic acids or carbon monoxide, according to a news release from Rice. The result can be used as fuels, chemicals or as starting materials to produce other compounds.

The technology is used in commercial membrane electrode assembly (MEA) electrolyzers to convert carbon dioxide into valuable compounds, but the technology isn’t perfected. A significant challenge in CO2RR technology has been the accumulation of bicarbonate salt crystals on the backside of the cathode gas diffusion electrode and within the gas flow channels. The salt precipitates block the flow of carbon dioxide gas through the cathode chamber, which reduce the performance and can cause a failure of the electrolyzers.

The goal in the study was to understand why and how bicarbonate salts form during this reaction. The Rice and UH teams worked together using operando Raman spectroscopy, which is a technique that allows researchers to study the structure of materials and any precipitates that adhere to them while the device is functioning.

“By utilizing operando Raman spectroscopy and optical microscopy, we successfully tracked the movement of bicarbonate-containing droplets and identified their migration pattern,” Shan said in the release. “This provided us the information to develop an effective strategy to manage these droplets without interrupting system stability.”

Next, the team worked to prevent the salt crystals from forming. First, they tested lowering the concentration of cations, like sodium or potassium, in the electrolyte to slow down the salt formation. This method proved to be effective.

They also coated the cathode with parylene, a synthetic polymer that repels water, like Teflon, which also notably improved the stability of the electrolyzer and prevented salt accumulation.

“Inspired by the waxy surface of the lotus leaf which causes water droplets to bead up and roll off, carrying off any dirt particles with it and leaving the leaf’s surface clean, we wondered if coating the gas flow channel with a nonstick substance will prevent salt-laden droplets from staying on the surface of the electrodes for too long and, therefore, reduce salt buildup.” Wang said in the release.

According to Wang, these relatively simple discoveries can extend the operational lifespan of CO2RR systems from a few hundred hours to over 1,000 hours.

The findings also have major implications for commercial applications, Shan added.

“This advancement paves the way for longer-lasting and more reliable (CO2RR) systems, making the technology more practical for large-scale chemical manufacturing,” Shan said in the release. “The improvements we developed are crucial for transitioning CO2 electrolysis from laboratory setups to commercial applications for producing sustainable fuels and chemicals.”

Podcast: How AI-powered detection can prevent workplace accidents before they happen

now streaming

Workplace safety has always been reactive. Incidents happen, reports are filed, lessons are learned — sometimes too late. But what if safety wasn’t about reacting to accidents, but preventing them altogether?

In this episode of the Energy Tech Startups Podcast, Stephen Ojji, founder and CEO of VisionTech, challenges how high-hazard industries approach safety. His vision? AI-driven incident detection that doesn’t just monitor the workplace —i t actively prevents injuries, ensures compliance, and builds a stronger safety culture.

From Oil and Gas Safety to AI Innovation

Stephen’s journey into energy tech isn’t what you’d expect. Starting as a safety engineer in Nigeria’s oil and gas sector, his early career was focused on ensuring compliance, training teams, and reducing workplace risks. But he quickly realized a flaw in the system — many incidents weren’t being reported at all.

"Workers don’t always report hazards, and not because they don’t care," he explains. "Sometimes it’s fear of consequences. Sometimes it’s just human nature — we’re focused on getting the job done. But ignoring small risks leads to big accidents."

That’s where VisionTech’s AI-powered safety monitoring system comes in. Instead of relying on human reporting, VisionTech integrates with existing workplace cameras, using computer vision technology and AI to detect:

  • Spills, fire hazards, and safety violations in real-time
  • Workers at risk of injury due to incorrect lifting techniques or missing PPE
  • Trends in safety culture, helping companies address recurring risks

"Think of it like having an extra set of eyes that never blinks," Stephen says. "Not to police workers, but to protect them."

AI and Safety: Moving Beyond Compliance to Prevention

Unlike traditional workplace monitoring, VisionTech’s AI safety system doesn’t track individuals — it tracks behaviors. The system uses ghosting technology, ensuring that workers’ identities remain anonymous while hazards are flagged instantly.

This shifts the focus from penalizing mistakes to empowering safer work environments.

"Companies say they care about safety, but what does that really mean?" Stephen challenges. "If safety is the priority, why not use every tool available to protect workers before an accident happens?"

And here’s the kicker: VisionTech doesn’t just detect risks. It helps companies act on them.

Instead of logging safety incidents in spreadsheets that go unread, the system transforms safety data into actionable insights — identifying patterns, trends, and areas for improvement that help companies make real, lasting changes.

Why Now? The Urgency for Smarter Safety Solutions

With OSHA regulations tightening and ESG commitments pushing for stronger worker protections, industrial companies are under growing pressure to do more than just meet compliance standards.

At the same time, AI and machine learning have advanced rapidly, making AI-powered safety monitoring more affordable, scalable, and accurate than ever before.

"If we had tried to build this 10 years ago, it wouldn’t have worked," Stephen admits. "The technology wasn’t ready. The market wasn’t ready. But today? It’s the right time, and the right tool for a problem that’s been ignored for too long."

What’s Next for VisionTech?

Currently in the MVP stage, VisionTech is preparing for pilot programs with oil and gas companies to prove its impact in real-world environments. The plan? Scale beyond oil and gas into manufacturing, construction, and any industry where safety matters.

But for Stephen, this isn’t just about launching another safety product — it’s about changing how companies think about protecting their workers.

"Safety isn’t just a compliance box to check," he says. "It’s about people. If companies really believe that ‘our employees are our greatest asset,’ then investing in their safety should be the easiest decision they ever make."

This is a conversation you don’t want to miss.

See the full episode with Stephen Ojji on the Energy Tech Startups Podcast below, or click here to listen.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.