Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. Photo via earthen.energy

In the rapidly evolving world of energy technology, few innovations hold as much promise as the solutions being developed by Earthen.

We recently had the opportunity to sit down with Manas Pathak, the CEO and co-founder of Earthen, to delve into the company's groundbreaking thermo-mechanical energy storage system. In this Q&A, we explore the core of Earthen's technology, its potential impact on the energy sector, and what the future holds.

Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. As the energy sector continues to evolve, solutions like these will play a pivotal role in shaping a sustainable future.

Energy Tech Startups: Can you explain the unique approach Earthen takes with its thermo-mechanical energy storage using supercritical CO2?

ManasPathak: Certainly. At Earthen, we've developed a thermo-mechanical energy storage solution that leverages supercritical CO2. This phase of CO2, achieved at high pressures and temperatures, behaves both as a liquid and a gas. It's central to our technology, offering a compact, safe, and cost-effective solution for long-duration energy storage. Think of it as a modern take on compressed air storage but using CO2 for superior results.

Q: With so many energy storage solutions emerging, what sets Earthen's system apart in terms of efficiency?

MP: Our system boasts a competitive round-trip efficiency of 78%, which is quite remarkable. To put it in perspective, this efficiency rivals that of lithium-ion batteries. The use of supercritical CO2 is central to achieving this efficiency, allowing us to harness its unique properties for optimal energy storage and retrieval.

Q: How does Earthen's technology integrate with existing infrastructure, like pipelines?

MP: One of the exciting applications of our technology is its ability to retrofit pipelines, converting them into energy storage assets. This means that existing infrastructure, like pipelines initially designed for other purposes, can be repurposed and utilized for energy storage, maximizing the use of resources and reducing the need for new constructions.

Q: What are Earthen's plans for the future, especially in terms of product launches and market presence?

MP: We're quite ambitious about our roadmap. We aim to launch our first commercial product by 2026-2027. As for our market strategy, we're targeting a diverse range of customer segments, from utility-scale energy storage to commercial-industrial spaces. Our mission is to democratize access to clean energy on a global scale, and we're taking concrete steps to realize that vision.

Q: Lastly, what inspired the creation of Earthen and its focus on equitable energy distribution?

MP: Growing up in India, I witnessed firsthand the disparities in energy consumption. The smallest homes often faced the longest power outages. This early realization highlighted the need for equitable energy distribution. At Earthen, our end goal is to see clean electrons reaching every corner of the globe, ensuring that everyone has access to reliable and sustainable energy.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future. Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.