The off-take agreement will provide SK On with ExxonMobil's lithium produced in Arkansas. Photo via exxonmobil.com

ExxonMobil has signed a non-binding memorandum of understanding with South Korean electric vehicle battery developer SK On.

The deal aims to secure a multiyear off-take agreement of up to 100,000 metric tons of MobilTM Lithium from the company’s first planned project in Arkansas. SK On will use the lithium in its EV battery manufacturing operations in the United States, which will contribute to ExxonMobil’s 2023 goal of supplying lithium for nearly 1 million EV batteries annually by 2030, and also assist in the build out of a U.S. EV supply chain.

The Arkansas project proposes an extraction of lithium from underground saltwater deposits and converting it into battery-grade material onsite. The approach will produce lithium more efficiently and with fewer environmental impacts than traditional hard rock mining, according to ExxonMobil. Consumer electronics, energy storage systems, and other clean energy technologies have all shown increased use in lithium needs.

The planned production of MobilTM Lithium will use ExxonMobil's core capabilities in drilling, subsurface exploration, and chemical processing, which should offer U.S. EV battery manufacturers a lower-carbon lithium supply option.

“The world needs more lithium to support its emissions goals, and we're doing our part to drive solutions forward in the United States,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “This collaboration with SK On demonstrates the leading role we play in the growing market for domestically sourced lithium, a market that’s advancing energy security and climate objectives, as well as supporting American manufacturing."

The annual production capacity of SK On in the U.S. alone is expected to reach more than 180 GWh in 2025. That production is enough to power around 1.7 million EVs per year.

“Through this partnership with ExxonMobil, we will continue strengthening battery supply chains in the U.S.,” Park Jong-jin, executive vice president of Strategic Procurement at SK On, adds.

Standard Lithium retaining operatorship, while Equinor will support through its core competencies, like subsurface and project execution capabilities. Photo via Equinor.com

Equinor makes big investment into lithium projects in Arkansas, East Texas

eyes on LI

A Norwegian international energy company has entered into a deal to take a 45-percent share in two lithium project companies in Southwest Arkansas and East Texas.

Equinor, which has its U.S. headquarters in Houston, has reached an agreement with Vancouver, Canada-based Standard Lithium Ltd. to make the acquisition. Standard Lithium retaining operatorship, while Equinor will support through its core competencies, like subsurface and project execution capabilities.

“Sustainably produced lithium can be an enabler in the energy transition, and we believe it can become an attractive business. This investment is an option with limited upfront financial commitment. We can utilise core technologies from oil and gas in a complementary partnership to mature these projects towards a possible final investment decision,” says Morten Halleraker, senior vice president for New Business and Investments in Technology, Digital and Innovation at Equinor, in a news release.

Standard Lithium retains the other 55 percent of the projects. Per the deal, will pay $30 million in past costs net to the acquired interest. The company also agreed to carry Standard Lithium's capex of $33 million "to progress the assets towards a possible final investment decision," per the release. Additionally, Equinor will make milestone payments of up to $70 million in aggregate to Standard Lithium should a final investment decision be taken.

Lithium is regarded as important to the energy transition due to its use in battery storage, including in electric vehicles. Direct Lithium Extraction, or DLE, produces the mineral from subsurface reservoirs. New technologies have the potential to improve this production method while lowering the environmental footprint.

Earlier this month, Houston-based International Battery Metals, whose technology offers an eco-friendly way to extract lithium compounds from brine, announced that it's installing what it’s billing as the world’s first commercial modular direct-lithium extraction plant located at US Magnesium’s operations outside Salt Lake City. The plant is expected to go online later this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”