Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations.

“This research breakthrough is critical for the synthesis of 2D perovskites, which hold the key to achieving commercially relevant stability for solar cells and for many other optoelectronic device applications and fundamental light matter interactions,” Mohite said in a statement.

Traditional synthesis methods for creating 2D halide perovskites, which have been shown to offer a high-performance low-cost way to produce solar cells, have generated uneven crystal growth when attempting to reach a higher n value. And uneven crystal growth can result in a less reliable material, while a high n value can result in higher electrical conductivity, among other benefits.

The study shows how the kinetically controlled space confinement method can gradually increase n values in 2D halide perovskites, which will assist in the production of crystals with a certain thickness.

“We designed a way to slow down the crystallization and tune each kinetics parameter gradually to hit the sweet spot for phase-pure synthesis,” Jin Hou, a Ph.D. student at Rice and a lead author on a study, said in a statement.

The process is expected to improve the stability and lower the costs of emerging technologies in optoelectronics, or the study and application of light-emitting or light-detecting devices, and photovoltaics, the conversion of thermal energy into electricity.

"This work pushes the boundaries of higher quantum well 2D perovskites synthesis, making them a viable and stable option for a variety of applications,” Hou added.

Houston universities have been making major strides relating to crystallization processes in recent months.

In September, the University of Houston announced The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to establish the Welch Center for Advanced Bioactive Materials Crystallization. The center will build upon UH professor Jeffrey Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Over the summer, a team of researchers at UH also published a paper detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.