Bayport HRS will be an innovative pipeline-based hydrogen refueling station. Photo via Getty Images

The Port of Houston Authority (Port Houston) received a $25 million grant from The Department of Transportation and the Federal Highway Administration this month to go toward a hydrogen fueling station for heavy-duty trucks in Bayport, known as Bayport HRS.

The funds will also support a public-private collaboration between the port and industrial gas company Linde Inc. with additional partners GTI Energy, Argonne National Laboratory and Center for Houston’s Future, according to a statement.

“The Houston Ship Channel is the busiest waterway in the nation,” Charlie Jenkins, Port Houston CEO, said in the news release. “As one of the channel’s leading advocates, Port Houston is committed to fostering sustainability, resilience, collaboration, and quality of life for the community and nation we serve.”

Bayport HRS will be an innovative pipeline-based hydrogen refueling station (HRS), which will be able to offer high fueling throughput and be publicly accessible. Linde will design, construct, own and operate the new facility.

“Partnering with Linde, one of the largest hydrogen producers in the world and owner of a major pipeline complex that serves the Houston region, is in line with the Port’s strategy of engaging the Houston Ship Channel industry on projects that benefit the community, promote sustainability, decarbonization, and clean transportation,” Rich Byrnes, Port Houston chief infrastructure officer, said in the news release.

Bayport HRS supports the Port’s Sustainability Action Plan and its net-zero emissions goal by 2050. The project will also align with national strategies for clean hydrogen and transportation decarbonization.

Another goal of the collaboration is to support the U.S. National Blueprint for Transportation Decarbonization, the National Zero-Emission Freight Corridor Strategy, and U.S. National Clean H2 Strategy and Roadmap.

In 2024, Port Houston secured nearly $57M in grant funding in sustainability efforts.

"The Houston/Gulf Coast's regional clean hydrogen economy continues to gain momentum, including with announcements such as this,” Brett Perlman, managing director at the Center for Houston's Future, said in the news release. "We are excited to be part of this important work to build out a clean hydrogen transportation network. This is also another great example of collaboration among business, government and community to get things done."

A barge hit a bridge in Galveston, resulting in an oil spill. No injuries were reported. Photo via portofgalveston.com

Barge hits bridge connecting Galveston and Pelican Island, causing partial collapse and oil spill

A barge slammed into a bridge pillar in Galveston, Texas, on Wednesday, spilling oil into waters near busy shipping channels and closing the only road to a small neighboring island. No injuries were reported.

The impact sent pieces of the bridge, which connects Galveston to Pelican Island, tumbling on top of the barge and shut down a stretch of waterway so crews could clean up the spill. The accident knocked one man off the vessel and into the water, but he was quickly recovered and was not injured, said Galveston County Sheriff’s Office Maj. Ray Nolen.

Ports along the Texas coast are hubs of international trade, but experts said the collision was unlikely to result in serious economic disruptions since it occurred in a lesser-used waterway. The island is on the opposite side of Galveston Island’s beaches that draw millions of tourists each year.

The accident happened shortly before 10 a.m. after a tugboat operator pushing two barges lost control of them, said David Flores, a bridge superintendent with the Galveston County Navigation District.

“The current was very bad, and the tide was high," Flores said. “He lost it.”

Pelican Island is only a few miles wide and is home to Texas A&M University at Galveston, a large shipyard and industrial facilities. Fewer than 200 people were on the campus when the collision happened, and all were eventually allowed to drive on the bridge to leave. The marine and maritime research institute said it plans to remain closed until at least Friday. Students who live on campus were allowed to remain there, but university officials warned those who live on campus and leave “should be prepared to remain off campus for an unknown period of time.”

The accident came weeks after a cargo ship crashed into a support column of the Francis Key Bridge in Baltimore on March 26, killing six construction workers.

The tugboat in Texas was pushing bunker barges, which are fuel barges for ships, Flores said. The barge, which is owned by Martin Petroleum, has a 30,000-gallon capacity, but it's not clear how much leaked into the bay, said Galveston County spokesperson Spencer Lewis. He said about 6.5 miles (10.5 kilometers) of the waterway were shut down because of the spill.

The affected area is miles away from the Gulf Intracoastal Waterway, which sees frequent barge traffic, and the Houston Ship Channel, a large shipping channel for ocean-going vessels. Aside from the environmental impact of the spill, the region is unlikely to see large economic disruption as a result of the accident, said Marcia Burns, a maritime transportation expert at the University of Houston

“Because Pelican Island is a smaller location, which is not in the heart of commercial events, then the impact is not as devastating," Burns said. “It’s a relatively smaller impact.”

At the bridge, a large piece of broken concrete and debris from the railroad hung over the side and on top of the barge that rammed into the passageway. Flores said the rail line only serves as protection for the structure and has never been used.

Opened in 1960, the Pelican Island Causeway Bridge was rated as “Poor” according to the Federal Highway Administration’s 2023 National Bridge Inventory released last June.

The overall rating of a bridge is based on whether the condition of any of its individual components — the deck, superstructure, substructure or culvert, if present — is rated poor or below.

In the case of the Pelican Island Causeway Bridge, inspectors rated the deck in “Satisfactory Condition,” the substructure in “Fair Condition” and the superstructure — or the component that absorbs the live traffic load — in “Poor Condition.”

The Texas Department of Transportation had been scheduled in the summer of 2025 to begin construction on a project to replace the bridge with a new one. The project was estimated to cost $194 million. In documents provided during a virtual public meeting last year, the department said the bridge has “reached the end of its design lifespan, and needs to be replaced.” The agency said it has spent over $12 million performing maintenance and repairs on the bridge in the past decade.

The bridge has one main steel span that measures 164 feet (50 meters), and federal data shows it was last inspected in December 2021. It’s unclear from the data if a state inspection took place after the Federal Highway Administration compiled the data.

The bridge had an average daily traffic figure of about 9,100 cars and trucks, according to a 2011 estimate.

___

Lozano reported from Houston. Associated Press reporters Christopher L. Keller in Albuquerque, New Mexico; Valerie Gonzalez in McAllen, Texas; Acacia Coronado in Austin, Texas; and Ken Miller in Oklahoma City contributed to this report.

The project’s first phase is targeted to produce more than 1.1 million tonnes per annum of low-carbon ammonia by the end of 2027. Photo via Houston.org

4 energy companies join forces on low-carbon ammonia project on the Houston Ship Channel

team work

Four companies from all around the world have agreed to work on a large-scale, low-carbon ammonia production and export project on the Houston Ship Channel.

Tokyo-based INPEX Corporation, Paris-based Air Liquide Group, Oklahoma City-based LSB Industries Inc., and Houston-based Vopak Moda Houston LLC have agreed to collaborate on the project, which is expected to deliver its first phase by the end of 2027 with the production of more than 1.1 million tonnes per annum (MTPA) of low-carbon ammonia.

“As we approach the achievement of our net zero target by 2050, the unveiling of our low carbon ammonia project in Texas, USA, stands as a momentous testament to INPEX's strong commitment to environmental leadership," INPEX President and CEO Takayuki Ueda says in a news release. "This innovative endeavor marks a significant milestone to create a clean fuel supply chain for a sustainable future.

"By harnessing the power of cutting-edge technologies and collaborative partnerships with Air Liquide, LSB and Vopak Moda, we are accelerating the transition to a low-carbon world, while solidifying our position as a pioneer in energy transformation and a responsible global energy player,” he continues.

Earlier this year, the project completed a feasibility study. Each of the companies will collaborate in various capacities, according to the release, including: Air Liquide and INPEX partnering on low-carbon hydrogen production with their respective technologies; LSB and INPEX collaborating on low-carbon ammonia production, with LSB selecting the ammonia loop technology provider, the pre-FEED, and the engineering, procurement and construction of the facility and LSB overseeing day-to-day operations; INPEX and LSB would sell the low-carbon ammonia and finalize off-take agreements; and Vopak Moda, which currently operates ammonia storage and handling infrastructure, will maintain its ownership of the existing infrastructure and future storage built.

“This project is well aligned with our strategy to become a leader in the global energy transition through the production of low-carbon ammonia,” Mark Behrman, LSB Industries president and CEO, says in the statement. “As a long-standing, highly experienced nitrogen producer and developer of nitrogen production facilities, we are uniquely positioned to play a key role in a critical element of this project by overseeing the design, construction and operation of the ammonia loop."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”