The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance.

Houston-area members of the Carbon Measures coalition are:

  • Spring-based ExxonMobil
  • Air Liquide, whose U.S. headquarters is in Houston
  • Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston
  • Honeywell, whose Performance Materials and Technologies business is based in Houston.
  • BASF, whose global oilfield solutions business is based in Houston
  • Linde, whose Linde Engineering Americas business is based in Houston

Carbon Measures will create an accounting framework that eliminates double-counting of carbon pollution and attributes emissions to their sources, said Amy Brachio, the group’s CEO. The model is expected to take two years to develop, and between five and seven years to scale up, Bloomberg reported.

The coalition wants to create a system that will “unleash markets and competition,” unlock investments and speed up the pace of emissions reduction, said Brachio, former vice chair of sustainability at professional services firm EY.

“If you can’t measure it, you can’t manage it,” said Darren Woods, chairman and CEO of ExxonMobil. “The first step to reducing global emissions is to know where they’re coming from — and today, we don’t have an accurate system to do this.”

Other members of the coalition include BlackRock-owned Global Infrastructure Partners, Banco Satanader, EY and NextEra Energy.

“Transparent and consistent emissions accounting is not just a technical necessity — it’s a strategic imperative. It enables smarter decisions and accelerates real progress across industries and borders,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions.

Honeywell launched the Battery Manufacturing Excellence Platform, or Battery MXP. Photo via honeywell.com

Honeywell introduces new AI software to enhance battery cell management at gigafactories

hi, tech

As the world continues to electrify, new optimized battery technology is critical, and Honeywell, which has a unit of its business based in Houston, recognizes that.

Honeywell (NASDAQ: HON) launched the Battery Manufacturing Excellence Platform, or Battery MXP, an artificial intelligence-powered software solution that will improve battery cell yields and, by extension, operation of gigafactories for manufacturers.

"With Honeywell's Battery MXP and its automation capabilities, we will be able to quickly and effectively establish a foundation for our network of gigafactories," John Kem, president of American Battery Factory, says in a statement. "This solution is vital in our manufacturing operation because it allows us to reduce scrap and scale up quickly, while also ensuring we meet the U.S. and international demand for high quality lithium iron phosphate batteries as we prepare for the unprecedented surge expected over the next decade."

The AI technology built into the platform can detect and remediate quality issues, preventing scrapped or wasted material. Per the news release, the platform can reduce startup material scrap rates by 60 percent.

"The electrification of everyday life continues to increase global demand for quality lithium-ion batteries to power electric vehicles, consumer electronics and battery energy storage systems," Pramesh Maheshwari, president of Honeywell Process Solutions, adds. "With the construction of more than 400 gigafactories planned worldwide by 2030, Honeywell's Battery MXP is a crucial technology that enables manufacturers to maximize cell yields and reach peak production much quicker than traditional methods."

Battery MXP can provide real-time information from raw material sage to finished product. The platform additionally creates enhanced safety measures.

Last month, Weatherford and Honeywell announced the partnership that will combine Honeywell's emissions management suite with Weatherford's technology.

Weatherford and Honeywell announced the partnership that will combine Honeywell's emissions management suite with Weatherford's technology. Photo via Getty Images

Honeywell, Weatherford partner on emissions management for energy industry

team work

Two major corporations have teamed up to provide a comprehensive emissions management solution that should have an impact on the energy transition.

Houston-based Weatherford and North Carolina-based Honeywell, which has a significant presence in Houston, announced the partnership that will combine Honeywell's emissions management suite with Weatherford's Cygnet SCADA platform.

Customers will be able to use the new tool "to monitor, report, and take measures to help reduce greenhouse gas emissions, flammable hydrocarbons, and other potentially dangerous and toxic gases," per a news release.

"Through this collaboration with Honeywell, we have built an alliance that further bridges the gap between technological excellence and environmental stewardship," Girish Saligram, president and CEO of Weatherford, says in the release. "Together, our transformative offering provides cutting-edge tools and actionable data to help customers reach their sustainability goals with confidence and efficiency."

The combined platform will provide upstream oil and gas operators a way to access emissions data in near real-time to better make business decisions on potential issues and meeting regulatory requirements. Additionally, the software should equip users with ways to improve efforts to reach environmental goals.

Honeywell's partnership with Weatherford highlights the importance of empowering organizations with solutions that can help quantify and reduce emissions within the energy industry," Pramesh Maheshwari, president of Honeywell Process Solutions, adds. "By integrating our emissions management solution with Weatherford's well lifecycle technology, our customers can now accurately set targets and monitor near real-time progress on their path to net-zero."

Last fall, a Houston-based unit of industrial conglomerate Honeywell unveiled a gas meter capable of measuring both hydrogen and natural gas. Honeywell’s European launch follows a Dutch test of the EI5 smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter.

The Houston Energy Transition Initiative has added six new members. Photo via htxenergytransition.org

Houston organization names 6 new members working toward a low-carbon future

the view from heti

The Greater Houston Partnership’s The Houston Energy Transition Initiative welcomes six new member companies including, one executive level and five investor level. HETI members are champions in their fields, each creating innovative solutions for a sustainable and low-carbon future. Our members are critical to continue to position our region to lead the global energy transition.

Executive Member

Mitsubishi Heavy Industries is one of the world’s leading industrial groups, spanning energy, smart infrastructure, industrial machinery, aerospace, and defense. MHI Group combines cutting-edge technology with deep experience to deliver innovative, integrated solutions that help to realize a carbon neutral world, improve the quality of life and ensure a safer world.

Investor Level Members

Eni Next LLC is a corporate venture capital company, created to integrate corporate research, with open innovation, enhancing the value of dynamic and innovative start-ups through early-stage financing and successive capital increases. Eni Next evaluates and invests in companies developing technologies with a lower carbon footprint for energy production, improved efficiency for our industrial operations and digital solutions.

Honeywell International Inc. invents and commercializes technologies that address some of the world’s most critical challenges around energy, safety, security, air travel, productivity, and global urbanization. They are a leading software-industrial company committed to introducing state of the art technology solutions to improve efficiency, productivity, sustainability, and safety in high growth businesses in broad-based, attractive industrial end markets.

Natixis Investment Managers is a global asset management company. Ranked among the world’s largest asset managers, Natixis delivers a diverse range of solutions across asset classes, styles, and vehicles. The company is dedicated to advancing sustainable finance and developing innovative ESG products.

Stantec is a global design and delivery leader in sustainable engineering, architectural planning, and environmental services. Stantec’s multidisciplinary teams address climate change, urbanization, and infrastructure resiliency. The company is at the forefront of innovations to enhance environmental and social opportunities. The Stantec community unites more than 26,000 employees working in over 400 locations across six continents.

Vopak North America is an independent infrastructure provider with an unrivaled network of 78 terminals in 23 countries and 25+ joint venture partners, connecting the supply and demand for products that are essential to the economy and the daily lives of people around the world. Vopak takes pride in improving access to cleaner energy and feedstocks for a growing world population, ensuring safe, clean and efficient storage and handling of bulk liquid products and gases.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Honeywell’s European launch follows a Dutch test of the smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter. Photo via honeywell.com

Honeywell plans to launch world's first of hydrogen-ready gas meter

smart tech

A Houston-based unit of industrial conglomerate Honeywell has unveiled a gas meter capable of measuring both hydrogen and natural gas.

Honeywell’s European launch follows a Dutch test of the EI5 smart gas meter, which the company touts as the world’s first commercially available hydrogen-ready gas meter.

“Honeywell’s hydrogen-capable meters are key to facilitating a seamless transition to hydrogen energy across European utility networks,” Kinnera Angadi, chief technology officer of smart energy and thermal solutions at Honeywell, says in a November 28 news release. “We’re enhancing operational efficiency with meters that are ready for the future, helping our customers stay ahead in a market that’s swiftly transitioning toward greener energy solutions.”

Among other products, Honeywell’s Houston-based Process Solutions unit supplies connected utility and metering technology like the new EI5 gas meter. In the Netherlands, Honeywell’s meters will be installed at residences by Dutch energy company Enexis Group.

A 2022 report from the Hydrogen Council indicates that hydrogen costs are expected to fall by 2030, making it competitive with other low-carbon option. This insight helped lead Enexis Group to commit to converting its main gas lines to hydrogen within the next three years.

“The transition to clean energy is as necessary as it is complex,” says Ruud Busscher, program manager for energy transit and Hydrogen at Enexis. “This project aims to challenge the way we operate by using an alternative to natural gas. We are finding out how the existing grid will be influenced by hydrogen and what new paths can be taken for a sustainable future.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.