Shell has entered a 15-year agreement to be the first offtaker to receive electrons from Fervo Energy's flagship geothermal development in Beaver County, Utah, known as Cape Station. Photo via fervoenergy.com

Beginning in 2026, Shell will be able to apply 31 megawatts of 24/7 carbon-free geothermal power to its customers thanks to a new 15-year power purchase agreement with Houston next-gen geothermal development company Fervo Energy.

“This agreement demonstrates that Fervo is stepping up to meet the moment,” Dawn Owens, VP, Head of Development & Commercial Markets at Fervo, said in a news release.

Shell will become the first offtaker to receive electrons from Fervo's flagship geothermal development in Beaver County, Utah’s Phase I of Cape Station. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026.

Cape Station will increase from 400 MW to 500 MW, which is considered by the company a major accomplishment due to recent breakthroughs in Fervo’s field development strategy and well design. Fervo is now able to generate more megawatts per well by optimizing well spacing using fiber optic sensing, increasing casing diameter and implementing staggered bench development. This can allow for a 100 MW capacity increase without the need for additional drilling, according to the company.

With the addition of the new Shell deal, all 500 MW of capacity from Fervo’s Cape Station are now fully contracted. The deal also includes existing agreements, like Fervo’s PPAs with Southern California Edison and an expanded deal with Clean Power Alliance that adds 18 MW of carbon-free geothermal energy to the company’s existing PPA with Fervo.

“As customers seek out 24/7 carbon-free energy, geothermal is clearly an essential part of the solution,” Owens said in the release.

Time named its top innovations of the year — and two Houston-born energy transition inventions made the cut. Photo via Getty Images

2 Houston energy transition companies recognized for creating top inventions of the year

bright ideas

Innovations from two Houston energy transition companies have been crowned among the top inventions of the year.

Time magazine’s "200 Best Inventions of 2024" identified top innovations across consumer goods, home health, robotics, sustainability, and two dozen other categories.

Fervo Energy, a provider of geothermal power, was recognized the Green Energy category for its FervoFlex system. As Time explains, the system enables horizontal drilling into hot rock under the earth’s surface and pumping in water to generate hot water and steam. The geothermal energy that’s produced can be stored and released for future use by Fervo customers.

Jack Norbeck, Fervo’s co-founder and chief technology officer, predicts that by 2050, geothermal energy will become “the backbone of the decarbonized energy system.”

In September, Fervo secured a $100 million bridge loan for the first phase of its ongoing Cape Station project in Utah, which is being touted as the world’s largest geothermal energy plant. Slated for completion in June 2026, this initial phase is expected to generate 90 megawatts of renewable energy. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

Time also lauded NanoTech Materials among its Manufacturing and Materials honorees for its Insulative Ceramic Particle. This powder can be added to materials like drywall or shingles to improve fire resistance and decrease heat penetration, according to Time. NanoTech’s Wildfire Shield coating for buildings contains the powder. Wildfire Shield prevents damage to materials and harm from noxious smoke.

NanoTech’s other product, Cool Roof Coat, is painted on a building to decrease HVAC use. This year, NanoTech moved into a 43,000-square-foot space in Katy, Texas, and brought on new partners that expanded the company's reach in the Middle East and Singapore.

A third Houston company was also praised byTime is BiVACOR — named to its Experimental category of the list. The full list of this year's top inventions is available online.

———

This article originally ran on InnovationMap.

Baker Hughes has entered into an agreement with an airport manager and operator to introduce cleaner, lower-carbon solutions to the industry. Photo courtesy of Baker Hughes

Houston oilfield services giant makes deal to transition airports to cleaner energy

seeing green

A Houston-headquartered oilfield services company has announced a partnership with an airport manager and operator to develop lower-carbon solutions for the airport industry.

Baker Hughes (NASDAQ: BKR) announced today that it has entered into a memorandum of understanding with Virginia-based Avports. The agreement is "to develop, implement and operate onsite microgrid solutions for the airport industry," according to a news release from Baker Hughes, with a goal of reducing emissions and work toward a future with zero-emission infrastructure, including buildings, vehicles, etc.

"Baker Hughes' commitment to emissions reductions has allowed us to develop and successfully deploy low-carbon and hydrogen technologies to advance the energy transition in many industries," Bob Perez, vice president of project development at Baker Hughes, says in the statement. "The opportunity to bring these solutions to airports, in collaboration with Avports' proven track record in airport management, is very promising as the increasing needs and demands of these infrastructures must be more resilient, efficient and cost-effective."

Avports, which was founded in 1927 as a division of Pan American World Airways, manages and operates small to mid-sized airports across the country, and has already made investments in innovative and sustainable initiatives, including introducing green hydrogen solutions. Baker Hughes will bring its energy technology portfolio, such as hydrogen-ready turbines and heat recovery solutions for grid use, to the table.

"Providing a technical and economic roadmap to airports to meet their energy needs of the future is key as an airport management and operations company," Jorge Roberts, CEO of Avports, says in the release. "Our partnership with Baker Hughes brings world-class technology and know-how together with our ability to support airport customers to realize these solutions at their facility."

Baker Hughes has entered into a few partnerships this year with energy transition goals. In May, the Houston company announced a partnership with ADNOC to explore green and low-carbon hydrogen solutions. In March, Baker Hughes collaborated with HIF Global, an eFuels company, for a direct air capture project. Additionally in March, Ecopetrol, Baker Hughes, and the hydroelectric power plant Central Hidroeléctrica de Caldas of Grupo EPM, signed an MoU to potentially implement a geothermal power generation project in Colombia.

Fervo Energy has raised additional funding to continue executing on its mission of more reliable geothermal energy production. Photo via FervoEnergy.com

Innovative Houston energy startup secures $10M investment

fresh funding

A next-generation geothermal tech company announced a new investment from an Oklahoma City-based oil and gas producer.

Fervo Energy secured the $10 million strategic investment from Devon Energy Corporation (NYSE: DVN) this week. The deal creates a partnership between the two entities.

“We are thrilled to have Devon as a partner,” says Tim Latimer, co-founder and CEO of Fervo, in a news release. “Devon is a technology leader with historic and unparalleled expertise in drilling and completing wells. We expect this partnership will help unlock further potential for geothermal as the primary 24/7 renewable energy source.”

Fervo's technology includes drilling horizontal wells for commercial geothermal production as well as distributed fiber optic sensing to geothermal reservoir development, per the release. The strategy allows for more accessible geothermal power.

“We are excited about this partnership with Fervo, an innovator and leader in the enhanced geothermal space,” says David Harris, chief corporate development officer and executive vice president at Devon. “This investment is a good match for Devon’s new energy ventures strategy.”

Last year, Fervo raised a $138 million series C round to support the completion of power plants in Nevada and Utah and evaluate new projects in California, Idaho, Oregon, Colorado, and New Mexico, as well as in other countries. This latest investment brings the company's total funds raised to $187 million since its inception in 2017.

This article originally ran on Innovation Map.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.