Baker Hughes has entered into an agreement with an airport manager and operator to introduce cleaner, lower-carbon solutions to the industry. Photo courtesy of Baker Hughes

A Houston-headquartered oilfield services company has announced a partnership with an airport manager and operator to develop lower-carbon solutions for the airport industry.

Baker Hughes (NASDAQ: BKR) announced today that it has entered into a memorandum of understanding with Virginia-based Avports. The agreement is "to develop, implement and operate onsite microgrid solutions for the airport industry," according to a news release from Baker Hughes, with a goal of reducing emissions and work toward a future with zero-emission infrastructure, including buildings, vehicles, etc.

"Baker Hughes' commitment to emissions reductions has allowed us to develop and successfully deploy low-carbon and hydrogen technologies to advance the energy transition in many industries," Bob Perez, vice president of project development at Baker Hughes, says in the statement. "The opportunity to bring these solutions to airports, in collaboration with Avports' proven track record in airport management, is very promising as the increasing needs and demands of these infrastructures must be more resilient, efficient and cost-effective."

Avports, which was founded in 1927 as a division of Pan American World Airways, manages and operates small to mid-sized airports across the country, and has already made investments in innovative and sustainable initiatives, including introducing green hydrogen solutions. Baker Hughes will bring its energy technology portfolio, such as hydrogen-ready turbines and heat recovery solutions for grid use, to the table.

"Providing a technical and economic roadmap to airports to meet their energy needs of the future is key as an airport management and operations company," Jorge Roberts, CEO of Avports, says in the release. "Our partnership with Baker Hughes brings world-class technology and know-how together with our ability to support airport customers to realize these solutions at their facility."

Baker Hughes has entered into a few partnerships this year with energy transition goals. In May, the Houston company announced a partnership with ADNOC to explore green and low-carbon hydrogen solutions. In March, Baker Hughes collaborated with HIF Global, an eFuels company, for a direct air capture project. Additionally in March, Ecopetrol, Baker Hughes, and the hydroelectric power plant Central Hidroeléctrica de Caldas of Grupo EPM, signed an MoU to potentially implement a geothermal power generation project in Colombia.

Fervo Energy has raised additional funding to continue executing on its mission of more reliable geothermal energy production. Photo via FervoEnergy.com

Innovative Houston energy startup secures $10M investment

fresh funding

A next-generation geothermal tech company announced a new investment from an Oklahoma City-based oil and gas producer.

Fervo Energy secured the $10 million strategic investment from Devon Energy Corporation (NYSE: DVN) this week. The deal creates a partnership between the two entities.

“We are thrilled to have Devon as a partner,” says Tim Latimer, co-founder and CEO of Fervo, in a news release. “Devon is a technology leader with historic and unparalleled expertise in drilling and completing wells. We expect this partnership will help unlock further potential for geothermal as the primary 24/7 renewable energy source.”

Fervo's technology includes drilling horizontal wells for commercial geothermal production as well as distributed fiber optic sensing to geothermal reservoir development, per the release. The strategy allows for more accessible geothermal power.

“We are excited about this partnership with Fervo, an innovator and leader in the enhanced geothermal space,” says David Harris, chief corporate development officer and executive vice president at Devon. “This investment is a good match for Devon’s new energy ventures strategy.”

Last year, Fervo raised a $138 million series C round to support the completion of power plants in Nevada and Utah and evaluate new projects in California, Idaho, Oregon, Colorado, and New Mexico, as well as in other countries. This latest investment brings the company's total funds raised to $187 million since its inception in 2017.

This article originally ran on Innovation Map.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Here's how Texas ranks as an energy efficient state

by the numbers

How energy efficient is the Lone Star State? A new report finds that Texas has some room for improvement in that department.

In its 2024 "Most & Least Energy-Efficient States" report, WalletHub ranks Texas at No. 36 out of the 50 states with a score of 47.5 out of 100 points.

The report ranked each state on both its home and auto efficiency. Texas came in No. 32 for home energy efficiency, which factored in the National Weather Service's annual degree days.

For auto efficiency, Texas came in at No. 38, but ranked No. 43 for vehicle-fuel efficiency specifically and No. 20 for transportation efficiency.

"We divided the annual vehicle miles driven by gallons of gasoline consumed to determine vehicle-fuel efficiency and measured annual vehicle miles driven per capita to determine transportation efficiency," according to WalletHub, which used data from the U.S. Census Bureau, National Climatic Data Center, U.S. Energy Information Administration, and U.S. Department of Transportation - Federal Highway Administration.


Source: WalletHub

Texas receives mixed reviews when it comes to energy reports from WalletHub. A June report found that Texas ranked as the fourth cheapest state for energy, and in April the state was found to be the thirteenth least green state.

Zooming in on Houston, the reports don't look any better. Earlier this month, the Bayou City was ranked the third worst metro when it comes to the country's greenest cities.

Texas automaker invests in first-of-its-kind EV charging station initiative

plugging in

A charging network founded by eight of the world’s top automakers have announced that they have broken ground on their first electric vehicle charging station.

IONNA will work to transform a historic district gas station into a new "Rechargery" in North Carolina. The initiative is backed by Plano-based Toyota, along with BMW, General Motors, Honda, Hyundai, Mercedes-Benz, Kia, and Stellantis.

With plans to open locations across the country, the station will provide 10 covered parking bays and will be accessible to both CCS and NAC chargers. The charging ports will be capable of up to 400 kilowatts and 800+ Volts. The site will also include an indoor driver’s lounge, coffee service, food/beverage, restrooms, and WIFI.

“We are excited to announce our support of IONNA to deploy DC fast chargers throughout the U.S. and Canada,” Ted Ogawa, president and CEO of Toyota Motor North America, says in a news release. “We believe this will not only promote the adoption of BEVs and increase customer confidence in the technology, but it will provide our Toyota and Lexus customers with access to IONNA’s rapidly growing charging network in North America.”

IONNA will “enable urban and long-distance EV mobility for all with over 30,000 ultra-fast-and-reliable charging points by 2030” according to the company.

IONNA also announced Jackie Slope as the Chief Technology Officer. Slope previously worked with customer experiences at Crypto.com Arena and Madison Square Garden.

“Having spent my career raising the bar around the customer experience I am excited to find ways to innovate and elevate the charging experience by serving the customer above all else in this new and exciting industry,” Slope said in a news release.

While the North Carolina location is the first of its kind, IONNA plans to expand its Rechargery stations around North America soon.

In other EV news, Hyundai Motor and Kia launched a project on Sept. 25 to develop lithium iron phosphate (LFP) battery cathode material. Hyundai Steel and cathode material market leader EcoPro BM will aim to synthesize materials directly without creating a precursor for LFP battery cathode material production