Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site. Photo via utexas.edu

A Texas US Department of Energy initiative has added a new corporate player.

Hitachi Energy has joined the DOE's H2@Scale in Texas and Beyond initiative with GTI Energy, Frontier Energy, The University of Texas Austin, and others. The initiative, which opened earlier this year, plans to assist in “integrating utility-scale renewable energy sources with power grids and managing and orchestrating a variety of energy sources” according to a news release.

Most of the ‘H2@Scale project’s activities take place at University of Texas JJ Pickle Research Center in Austin. The project is part of a larger one to expand hydrogen’s role and help to decarbonize Texas. The ‘H2@Scale' project consists of multiple hydrogen production options like a vehicle refueling station alongside a fleet of hydrogen fuel cell vehicles.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site.

Another larger goal is to investigate the efficiency and cost-effectiveness of hydrogen generation from renewable resources, which all aligns with the project’s vision of decarbonization efforts.

Hitachi Energy is part of the full hydrogen value chain from early-stage project origination and design. They also work to ensure grid compliance, power conversion systems and asset management solutions.

“Hitachi Energy is proud to be a key partner in the US Department of Energy’s ‘H2@Scale in Texas and Beyond’ project. The initiative comes at a pivotal moment in our commitment to advancing hydrogen production and its role in the evolving clean energy landscape,” Executive Vice President and Region Head of North America at Hitachi Energy Anthony Allard says in a news release. “As hydrogen emerges as a critical element in decarbonizing hard-to-abate industries, Hitachi Energy remains dedicated to drive innovation and sustainability on a global scale.”

Hitachi’s project teams will undertake feasibility studies for scaling up hydrogen production and use, which will aim to benefit the development of a strategic plan and implementation of the H2@Scale project in the Port of Houston and the region of the Gulf Coast. The teams will also seek opportunities to leverage prospective hydrogen users, pre-existing hydrogen pipelines, and large networks of concentrated industrial infrastructure. Then, they will work to identify environmental and economic benefits of hydrogen deployment in the area.

Earlier this year, Hitachi Energy teamed up with teamed up with Houston-based electrical transmission developer Grid United for a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin. Photo via utexas.edu

Texas hydrogen research hub opens to support statewide, DOE-backed initiative

hi to hydrogen

A Texas school has cut the ribbon on a new hydrogen-focused research facility that will play a role in a statewide, Department of Energy-funded energy transition initiative.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin as part of the “Demonstration and Framework for H2@Scale in Texas and Beyond” project, which is supported by the DOE's Hydrogen and Fuel Cell Technologies Office.

The hydrogen proto-hub is first-of-its-kind and part of Texas-wide initiative for a cleaner hydrogen economy and will feature contributions from organizations throughout the state. The facility will generate zero-carbon hydrogen by using water electrolysis powered by solar and wind energy, and steam methane reformation of renewable natural gas from a Texas landfill.

The hydrogen will be used to power a stationary fuel cell for power for the Texas Advanced Computing Center, and it will also supply zero-emission fuel to cell drones and a fleet of Toyota Mirai fuel cell electric vehicles. This method will mark the first time that multiple renewable hydrogen supplies and uses have been networked at one location to show an economical hydrogen ecosystem that is scalable.

“The H2@Scale in Texas project builds on nearly two decades of UT leadership in hydrogen research and development” Michael Lewis, Research Scientist, UT Austin Center for Electromechanics, say in a news release. “With this facility, we aim to provide the educated workforce and the engineering data needed for success. Beyond the current project, the hydrogen research facility is well-positioned for growth and impact in the emerging clean hydrogen industry.”

Over 20 sponsors and industry stakeholders are involved and include Houston-based partners in Center for Houston’s Future and Rice University Baker Institute for Public Policy. Industry heavyweights like Chevron, Toyota, ConocoPhillips, and the Texas Commission on Environmental Quality are also part of the effort.

Texas hydrogen infrastructure and wind and solar resources position the state for clean hydrogen production, as evident in the recently released study, “A Framework for Hydrogen in Texas.” The study was part of a larger effort that started in 2020 with the H2@Scale project, which aims to develop clearer paths to renewable hydrogen as a “clean and cost-effective fuel” according to a news release. The facility will serve as an academic research center, and a model for future large-scale hydrogen deployments.

Participants in the DOE-funded HyVelocity Gulf Coast Hydrogen Hub will aim to gain insights from the H2@Scale project at UT Austin. The project will build towards a development of a comprehensive hydrogen network across the region. HyVelocity is a hub that includes AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Orsted, and Sempra Infrastructure. The GTI Energy administered HyVelocity involves The University of Texas at Austin, the Center for Houston’s Future, and Houston Advanced Research Center.

“H2@Scale isn't just about producing low-carbon energy, it's about creating clean energy growth opportunities for communities throughout Texas and the nation,” Adam Walburger, president of Frontier Energy, says in a news release. “By harnessing renewable energy resources to create zero-carbon hydrogen, we can power homes, businesses, transportation, and agriculture – all while creating jobs and reducing emissions.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Major Houston energy companies join new Carbon Measures coalition

green team

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance.

Houston-area members of the Carbon Measures coalition are:

  • Spring-based ExxonMobil
  • Air Liquide, whose U.S. headquarters is in Houston
  • Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston
  • Honeywell, whose Performance Materials and Technologies business is based in Houston.
  • BASF, whose global oilfield solutions business is based in Houston
  • Linde, whose Linde Engineering Americas business is based in Houston

Carbon Measures will create an accounting framework that eliminates double-counting of carbon pollution and attributes emissions to their sources, said Amy Brachio, the group’s CEO. The model is expected to take two years to develop, and between five and seven years to scale up, Bloomberg reported.

The coalition wants to create a system that will “unleash markets and competition,” unlock investments and speed up the pace of emissions reduction, said Brachio, former vice chair of sustainability at professional services firm EY.

“If you can’t measure it, you can’t manage it,” said Darren Woods, chairman and CEO of ExxonMobil. “The first step to reducing global emissions is to know where they’re coming from — and today, we don’t have an accurate system to do this.”

Other members of the coalition include BlackRock-owned Global Infrastructure Partners, Banco Satanader, EY and NextEra Energy.

“Transparent and consistent emissions accounting is not just a technical necessity — it’s a strategic imperative. It enables smarter decisions and accelerates real progress across industries and borders,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions.

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.