The potential SBIR rewards far outweigh the challenges, and with determination, your startup could be the next success story. Photo via Getty Images

Grants are everywhere, all the time, but often seem unobtainable for startups. Most companies tell me about their competitors winning grants but don’t know how to secure non-dilutive funding for themselves. It’s true that the SBIR program is competitive — with only 10 to 15 percent of applicants receiving awards — but with a little guidance and perseverance, they are most definitely obtainable.

An SBIR overview

The Small Business Innovation Research program was introduced on the federal level in 1982 with the purpose of de-risking early technologies. While most investors are hesitant to invest in a company that’s still in ideation, the SBIR program would provide an initial level of feasibility funding to develop a prototype. The program issues funds to companies without taking any equity, IP, or asking for the money back.

Since its inception, the SBIR program has funded over 200,000 projects through 11 different federal agencies, including, but not limited to, the Department of Defense, the National Institute of Health, and the National Science Foundation. Federal agencies with R&D budgets over $100 million dedicate at least 3.2 percent of their budget to the SBIR program to fund research initiated by small businesses.

Eligibility and application process

It is no surprise that only small businesses can apply for this non-dilutive funding. For SBIR purposes, a small business is defined as being a for-profit entity, smaller than 500 employees, 51 percent owned by US citizens or permanent residents, and not primarily owned by venture capital groups. This small business must also have the rights to the IP that needs de-risking.

To apply, the small business must have a specific project that needs funding. Normally, this project will have three specific aims that detail the action items that will be attempted during the funded period. Some agencies require a pre-application, like a letter of intent (DOE) or a project pitch (NSF). Others don’t have a screening process and you can simply submit a full application at the deadline. Most agencies published examples of funded or denied applications for you to review.

SBIR phases

Phase I of the SBIR program is the normal entry point for every agency. It takes your product from ideation, through a feasibility study, to having a prototype. While agencies provide various funding amounts, the range is between $75,000 to $300,000 for 3 to 12 months of R&D activities. Applications contain a feasibility research plan (around six pages), an abstract, specific aims, supporting documents, and a budget.

While some programs allow for Direct to Phase II (D2P2) applications, most don’t apply for Phase II until they have secured Phase I funding. This second phase allows companies with completed feasibility studies to test their new prototype at a larger scale. The budgets for this phase range from $600,000 to $3 million and span an average of two years. The research plan is twice as robust and a commercialization plan is also needed.

Tips for success

If you’re wondering if your technology would be a good fit for a certain program, you can start by looking at the SBIR website to see the previously funded projects. The more recent projects will give you an idea of the funding priorities for each agency. Most abstracts will allude to the specific aims, meaning you can get a sense of the research projects that were approved. If you regularly see an agency funding projects similar to yours, you can search sbir.gov/topics for that agency’s research topics and upcoming deadlines.

Your team is one of the most important aspects of the application. Since you will be reviewed by academic experts, it’s helpful to have a principal investigator on your project that has a history of experience or publications with similar technology. Keep in mind that this principal investigator must be primarily employed by your company at the time of the grant. If this individual is employed by a university or nonprofit research organization, consider taking the STTR route so you can utilize their expertise.

Preparing Phase I applications should take no less than eight weeks, and Phase II should take at least ten. Your first step should be read the entire solicitation and create action items. The early action items should be

  1. Completing government registrations, like SAM.gov
  2. Writing your abstract and specific aims
  3. Contacting the program manager or director for early feedback

Any bids, estimates, or letters of support may also take time to receive, so don’t delay pursuing these items.

Don’t stop trying

If you speak to any program officer, they will encourage you to keep applying. For resubmissions, you will have a chance to explain why your previous application was denied and what you’ve done to improve. Most companies receive funding on the resubmission. If you get the feeling that a specific agency isn’t the right fit, reach out to other agencies that may be interested in the technology. You may realize that a small pivot may open up better opportunities.

There are frequently published webinars from different agencies that will give overviews of the specific solicitations and allow for Q&A. If you feel stuck or are still concerned about getting started, reach out to an individual or group that can provide guidance. There are plenty of grant writers, some of which have reviewed for the SBIR program for different agencies, who can provide strategy, guidance, reviews, and writing services to provide different levels of help.

Securing SBIR funding can be a game-changer for startups. While the process may seem daunting at first, with the right approach and persistence, it’s very obtainable. Remember, each application is a learning experience, and every iteration brings you closer to success. Whether you seek support from webinars, program officers, or professional grant writers, the key is to keep pushing forward. The potential rewards far outweigh the challenges, and with determination, your startup could be the next SBIR success story.

------

Robert Wegner is the director of business development for Euroleader.

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron and ExxonMobil feed the need for gas-powered data centers

data center demand

Two of the Houston area’s oil and gas goliaths, Chevron and ExxonMobil, are duking it out in the emerging market for natural gas-powered data centers—centers that would ease the burden on electric grids.

Chevron said it’s negotiating with an unnamed company to supply natural gas-generated power for the data center industry, whose energy consumption is soaring mostly due to AI. The power would come from a 2.5-gigawatt plant that Chevron plans to build in West Texas. The company says the plant could eventually accommodate 5 gigawatts of power generation.

The Chevron plant is expected to come online in 2027. A final decision on investing in the plant will be made next year, Jeff Gustavson, vice president of Chevron’s low-carbon energy business, said at a recent gathering for investors.

“Demand for gas is expected to grow even faster than for oil, including the critical role gas will play [in] providing the energy backbone for data centers and advanced computing,” Gustavson said.

In January, the company’s Chevron USA subsidiary unveiled a partnership with investment firm Engine No. 1 and energy equipment manufacturer GE Vernova to develop large-scale natural gas power plants co-located with data centers.

The plants will feature behind-the-meter energy generation and storage systems on the customer side of the electricity meter, meaning they supply power directly to a customer without being connected to an electric grid. The venture is expected to start delivering power by the end of 2027.

Chevron rival ExxonMobil is focusing on data centers in a slightly different way.

ExxonMobil Chairman and CEO Darren Woods said the company aims to enable the capture of more than 90 percent of emissions from data centers. The company would achieve this by building natural gas plants that incorporate carbon capture and storage technology. These plants would “bring a unique advantage” to the power market for data centers, Woods said.

“In the near to medium term, we are probably the only realistic game in town to accomplish that,” he said during ExxonMobil’s third-quarter earnings call. “I think we can do it pretty effectively.”

Woods said ExxonMobil is in advanced talks with hyperscalers, or large-scale providers of cloud computing services, to equip their data centers with low-carbon energy.

“We will see what gets translated into actual contracts and then into construction,” he said.

Houston company wins contract to operate South Texas wind farm

wind deal

Houston-based Consolidated Asset Management Services (CAMS), which provides services for owners of energy infrastructure, has added the owner of a South Texas wind power project to its customer list.

The new customer, InfraRed Capital Partners, owns the 202-megawatt Mesteño Wind Project in the Rio Grande Valley. InfraRed bought the wind farm from Charlotte, North Carolina-based power provider Duke Energy in 2024. CAMS will provide asset management, remote operations, maintenance, compliance and IT services for the Mesteño project.

Mesteño began generating power in 2019. The wind farm is connected to the electric grid operated by the Energy Reliability Council of Texas (ERCOT).

With the addition of Mesteño, CAMS now manages wind energy projects with generation capacity of more than 2,500 megawatts.

Mesteño features one of the tallest wind turbine installations in the U.S., with towers reaching 590.5 feet. Located near Rio Grande City, the project produces enough clean energy to power about 60,000 average homes.

In June, CAMS was named to the Financial Times’ list of the 300 fastest-growing companies in North and South America. The company’s revenue grew more than 70 percent from 2020 to 2023.

Earlier this year, CAMS jumped into the super-hot data center sector with the rollout of services designed to help deliver reliable, cost-effective power to energy-hungry data centers. The initiative focuses on supplying renewable energy and natural gas.

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.