Houston now has 333 hybrid electric vehicles and 88 battery electric vehicles. Photo via houstontx.gov

The City of Houston is getting closer to its goal of all non-emergency, light-duty municipal vehicles to be electric by 2030.

According to late-June status report from the city, Houston now has 333 hybrid electric vehicles and 88 battery electric vehicles. An additional 67 battery electric pickups, 20 hybrid electric pickups, and 21 hybrid electric SUVs deliveries are expected to be up and running before the end of the calendar year, and expects to receive 27 battery-electric SUVs and 13 battery-electric pickups in the next 12 months.

"With almost half of carbon emissions in Houston coming from the transportation sector and a majority of those emissions coming from single occupancy vehicles, electrification is an important part of our climate action plan," Mayor Sylvester Turner said in the statement. "I am pleased to see the ongoing progress and am confident we will meet our goals."

According to Evolve Houston — a public-private partnership founded with CenterPoint, NRG, Shell, and the University of Houston to promote EV sales — about 9 percent of new cars in Houston were registered as EVs last year. This means that Houston's EV adoption rate was 2.5 percent over the US average, according to the statement.

As part of the Houston Climate Action Plan, the city is also working with Evolve Houston to build upon the Bayou City's EV charging infrastructure as well.

Houston currently has 57 installed chargers, two of which are DC fast chargers, according to the status report. The city recently signed a contract to purchase 144 level 2 battery chargers from Siemens and another 15 chargers are slated to be installed at the Houston Health Department's Stadium Drive location in the coming weeks.

Due to supply chain issues, the City's Fleet Management Department is also considering rolling out a mobile charging option and home-charging vehicles for emergency response employees to help reduce costs while still moving toward the city's goals.

Evolve Houston, founded in 2019 through Houston's Climate Action Plan, relaunched about a year ago with a new Equity Program to address poor air quality and limited access to public transportation in vulnerable communities.

It's one of many efforts related to Houston's goal of reaching carbon neutrality by 2050 and leading the global energy transition. In March the city partnered with The Hertz Corp. to triple Houston's EV rental fleet, as well add to the city's charging infrastructure and EV education and training opportunities. In recent years the city has launched a solar co-op, opened new labs and is slated to introduce a new fleet of 20 battery-powered electric buses in the near future.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.