The Houston Energy Transition Initiative spoke with Ramanan Krishnamoorti about the future of energy. Image via htxenergytransition.org

College students stand at the intersection of youth climate activism and emerging academic research that has the power to reshape the future of energy. Dr. Ramanan Krishnamoorti believe that college students have the power to tackle some of the world’s most pressing issues in energy, if given the opportunity. Krishnamoorti serves as University of Houston Vice President for Energy and Innovation and professor of chemical and biomolecular engineering is leading the university’s efforts to establish education, research and outreach partnerships to address energy and innovation challenges.

HETI sat down with Dr. Krishnamoorti to learn more about his journey in the energy industry, the importance of engaging the youth in climate change and how community partners can give college students a seat at the energy transition table.

Q: You have a passionate way of speaking about the energy transition and the mission to get to net zero by 2050. Tell us about your background in the energy industry.

My journey in the energy industry began in academia as a chemical engineer, where my early scientific focus revolved around polymeric materials, which are closely tied to the industrial and societal applications of oil and gas beyond traditional fuels.

During the early 2000s, when our society faced an energy shortage and was grappling with pressing challenges, my interest in the broader energy landscape began to take shape. It was during that time that I assumed the role of chair of the Chemical Engineering Department at the University of Houston, which provided me the remarkable opportunity to establish the petroleum engineering program (eventually department), fostering close collaboration with industry stakeholders.

This experience granted me invaluable insights into the intricate operations of the energy industry as a whole, which ultimately led to me becoming the chief energy officer at UH. Over the past decade, my deep engagement across the energy industry has allowed me to fully grasp the immense value of energy and the critical challenges we face in ensuring that it remains affordable, reliable and sustainable.

Q: When it comes to the renewable energy workforce, you’ve spoken about the need to engage current K-12 students in STEM to ensure a robust talent pool in the future. What are some ways we can help students recognize their potential as change agents in the energy transition?

In today’s rapidly evolving energy landscape, success hinges on attracting a diverse and talented workforce, whether it be in the conventional oil and gas sector, the decarbonization realm (energy transition) or the renewable energy industry. Creating a broad and inclusive pathway that appeals to students from middle school onwards is crucial. We must vividly demonstrate the transformative power of their actions and the power of learning by doing. This would inspire them to explore the fundamental disciplines of science, technology, engineering and mathematics. By connecting these academic foundations to real world challenges, we can show them the immense impact they could have in shaping a sustainable and advancing future.

Energy is the lifeblood of modern society, and providing reliable, affordable and sustainable energy for all is our collective responsibility. We must convey to students the robust career opportunities available within the industry as a whole. The skills and knowledge gained in this field are highly transferable, enabling individuals to navigate various sectors and contribute to positive change across the entire energy spectrum but also help transform the world to one of opportunities for humanity.

Q: At the recent Future of Global Energy conference presented by Chevron, you spoke about the importance of empowering young leaders to act and influence decisions around energy, climate change and sustainability. How can leading energy companies give students and recent graduates a seat at the energy transition table?

Energy companies need to recognize the passion and impatience of this new generation and tap into it. These young individuals are eager to be part of the solution and are driven by a desire for tangible success in the challenge of building an equitable and sustainable energy sector. By providing opportunities for hands-on experience and learning-by-doing, energy companies can channel their enthusiasm and leverage their digital native mindset to develop scalable solutions for the grand challenge of energy solutions across the world.

Moreover, fostering a culture of mentorship and giving back is essential. Students and recent graduates have a strong inclination to make a positive societal impact. By offering organized mentorship programs within K-12 schools and higher education institutions, they can provide avenues for young talent to contribute meaningfully and gain valuable insights and guidance from industry professionals.

Lastly, it’s crucial for energy companies to recognize and embrace the inherent consideration of environmental, social and governance issues by the new generation of entrants. When confronted by complex engineering challenges, these young leaders naturally bring a constructive perspective that incorporates ESG considerations. By actively engaging with their perspectives, companies can benefit from fresh ideas and contribute to the overall advancement of sustainable practices.

Q: Do you believe that actions and initiatives put in place by young people have the power to trigger the momentum needed to help scale energy transition related businesses?

Absolutely! The energy transition demands innovative approaches to rapidly scale up technologies, while simultaneously addressing regulatory, financial and communication engagement challenges that may lag.

The new generation of students and industry entrants have demonstrated their ability to navigate bureaucratic systems that are two steps behind the problems they face, making them adept problem solvers. By empowering and supporting them, we can leverage their strengths to confront energy transition challenges head on. This team effort, combining their fresh perspectives with the necessary resources, will accelerate momentum and drive the scaling of energy transition-related businesses.

Q: Do students today recognize the importance of the energy transition?

Today’s students not only recognize the importance of the energy transition, but they are actively driving it and making choices that clearly indicate that they are meaningfully contributing to the change. They embrace risk-taking and innovative approaches to solve real-world energy challenges –– they are comfortable in a world where they understand the issue of bottlenecks (as is common in the complex energy systems) and the need for trade-offs.

What sets them apart is their dedication to promoting justice and equity. In fact, a recent poll conducted in collaboration with the UH Hobby School of Public Affairs revealed that many UH students prioritize companies committed to addressing societal and environmental issues, even if it means a sacrifice in salary. Their commitment speaks volumes about their desire to drive change.

Q: Looking toward the future of energy, how can universities and community partners provide support that fuels innovation and energy expertise in the youth today?

To fuel innovation and cultivate energy expertise in today’s youth, universities, industry leaders and community partners must collaborate. At the University of Houston, where approximately half of students are first-generation, it is our responsibility as educators to provide vital support. This includes facilitating connections, showcasing role models and expanding their awareness of opportunities. As the energy university located in Houston, a city rich in diverse talent, we have a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale. By fostering this collaboration, we can inspire and empower the next generation.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NRG makes latest partnership to grow virtual power plant

VPP partners

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.