Kodiak Robotics unveiled its driverless semi-truck technology this month, which is expected to hit Texas roads later this year. Photo via Kodiak

Kodiak Robotics is scaling up its driverless semi truck, which will initially carry cargo on a Houston-to-Dallas route that’s set to formally launch this year.

The most recent version of Kodiak’s truck debuted in Las Vegas at the recent 2024 Consumer Electronics Show (CES). Mountain View, California-based Kodiak Robotics says the truck is equipped with safety-critical software and hardware (including braking, steering and sensors).

Kodiak’s sixth-generation truck builds on the company’s five years of real-world testing, which includes carrying 5,000 loads over more than 2.5 million miles.

“We’re the first and only company to have developed a feature-complete driverless semitruck with the level of automotive-grade safety redundancy necessary to deploy on public roads,” Don Burnette, founder and CEO of Kodiak, says in a news release.

“Over the course of 2.5 million miles, we’ve successfully demonstrated that our self-driving trucks can withstand the harsh environment of long-haul trucking from both a platform integrity and a software perspective,” he adds. “This truck fundamentally demonstrates that we’ve done the work necessary to safely handle driverless operations.”

Among the highlights of the sixth-generation truck are:

  • A pneumatic braking system controlled by Kodiak’s proprietary software.
  • A redundant steering system.
  • A proprietary safety computer.
  • A redundant power system.
  • Proprietary SensorPods for housing sensors.
  • Microphones designed to detect the presence of the sirens of emergency vehicles and other suspicious sounds.
  • An advanced communication system.

Founded in 2018, Kodiak has been delivering freight in Texas since mid-2019, including a Houston-to-Dallas route. Kodiak announced in 2022 that it had teamed up with Swedish retailer IKEA to pilot autonomous freight deliveries in Texas between the IKEA warehouse in Baytown and the IKEA store in Frisco.

———

This article originally ran on InnovationMap.


Soon, you'll be able to cruise to your destination without a driver in Houston. Photo via Cruise/Facebook

Self-driving rideshare company cruises its robotaxies into Houston

LOOK MA, NO DRIVER

A new driverless ridehail service is coming to Houston: Cruise, the all-electric, driverless car company backed by GM, is expanding in Texas with launches in both Dallas and the Bayou City.

This follows an initial launch in Austin in 2022, their first city in Texas.

Cruise builds and operates driverless vehicles that you can call via an app, like any other ride hailing service. "But our vehicles show up without anyone else inside," they say.

The entire fleet is all-electric and the vehicles are equipped with a 360-view, with the ability to react to whatever they encounter on the road.

They test their vehicles using simulations, through millions of scenarios and virtual miles; they’ve also driven more than 4 million real miles, mostly in San Francisco.

They have not defined what the cost will be but according to The Verge, the rates in San Francisco vary depending on length of trip and time of day: "A customer taking a 1.3-mile trip would pay 90 cents per mile and 40 cents per minute, in addition to a $5 base fee and 1.5 percent city tax, for a total of $8.72." By comparison, an Uber ride for the same trip would cost at least $10.41.

The company was founded in 2013 and vehicles began to hit the road in 2022. They operate a total fleet of roughly 300 all-electric AVs, powered 100 percent by renewable energy. In addition to Austin, they operate in San Francisco and Phoenix, where they've completed 35,000 self-driving deliveries in a partnership with Walmart.

According to a statement from CEO Kyle Vogt, they'll begin supervised driving (with a safety driver behind the wheel) in Houston as they finetune their AI technology to understand the nuances and unique elements of the city, with Dallas to follow shortly after.

In a blog post, Vogt says their cars drive the speed limit and come to a complete stop at every stop sign. They respond to police sirens, flashing lights on fire trucks or ambulances, and stop signs that fold out of school buses.

They react to people on scooters, people using bike lanes, and cars driving on the wrong side of the road. "In short, they are designed to drive safely by obeying the law and driving in a humanlike way," he says. Actually, that sounds better than humans.

When vehicles encounter a situation where they aren’t 100 percent sure of what to do, they slow down or stop and pull over to the side of the road. This has caused some bumps in San Francisco where cars stopped and idled in the street for no apparent reason, delaying bus riders and disrupting the work of firefighters.

Some of the "bumps" have been comical, such as the 2022 incident in which a confused San Francisco police officer pulled a Cruise over, and then the Cruise drove away.

And as Reuters notes, autonomous vehicles have not rolled out as fast as anticipated, due to regulations, safety investigations, and arduous technology.

When Cruise first enters a city, they hire a mapping and data collection team to learn bike lanes, school zones, and major intersections. But most of the time, the vehicles will be carrying riders in the back seat, or completely empty and en route to another pickup.

The company partners with first responders, including police and fire departments, to ensure they’re ready and familiar with how to interact with the vehicles, engaging with those agencies before and after launch.

"Our guiding mission has always been to improve road safety, reduce emissions, and reduce congestion with our driverless ride-hail service in cities, which is where we’ll see the most significant positive impact the soonest," Vogt says. "Houston and Dallas are committed to reducing traffic deaths as part of their Vision Zero commitments, and we are excited to operate in and partner with these new communities in this shared mission."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.