Two malls in town — The Galleria and Katy Mills Mall — soon see bp's EV charging Gigahubs. Photo via bp

Two Houston-area malls will be getting bp's electric vehicle charging technology thanks to a new global collaboration.

The global energy company will be bringing its global EV charging business, bp pulse, to 75 shopping facilities across the country thanks to a partnership with Simon Malls. Two malls in town — The Galleria and Katy Mills Mall — soon see bp's EV charging Gigahubs. The company will install and operate the chargers at the two area sites.

The deal aims to deliver over 900 ultra-fast charging bays that will support most make and model of EVs with the first locations opening to the public in early 2026. Other Texas locations include Grapevine Mills in Grapevine, and Austin’s Barton Creek Square.

“We’re pleased to complete this deal with Simon and expand our ultra-fast charging network footprint in the U.S.,” Richard Bartlett, CEO of bp pulse, says in a news release. “The Simon portfolio aligns with bp pulse’s strategy to deploy ultra-fast charging across the West Coast, East Coast, Sun Belt and Great Lakes, and we are thrilled to team up with Simon so that EV drivers have a range of retail offerings at their impressive destinations.”

Last month, bp pulse opened a EV charging station at its North American headquarters in Houston. The company plans to continue deployment of additional charging points at high-demand spots like major metropolitan areas, bp-owned properties, and airports, according to bp.

“As a committed long term infrastructure player with a global network of EV charging solutions, bp pulse intends to continue to seek and build transformative industry collaborations in real estate required to scale our network and match the demand of current and future EV drivers,” Sujay Sharma, CEO bp pulse Americas, adds.

———

This article originally ran on InnovationMap.

Texas, which was recently deemed one of the worst states for EV drivers, was reported in a Texas Trends survey to only have 5.1 percent of residents drive an electric-powered car, truck, or SUV. Photo via Getty Images

Poll: Many Texans, Americans still shy away from EV ownership despite recent pushes

by the numbers

Many Americans still aren’t sold on going electric for their next car purchase. High prices and a lack of easy-to-find charging stations are major sticking points, a new poll shows.

About 4 in 10 U.S. adults say they would be at least somewhat likely to buy an EV the next time they buy a car, according to the poll by The Associated Press-NORC Center for Public Affairs Research and the Energy Policy Institute at the University of Chicago, while 46% say they are not too likely or not at all likely to purchase one.

The poll results, which echo an AP-NORC poll from last year, show that President Joe Biden’s election-year plan to dramatically raise EV sales is running into resistance from American drivers. Only 13% of U.S. adults say they or someone in their household owns or leases a gas-hybrid car, and just 9% own or lease an electric vehicle.

Texas, which was recently deemed one of the worst states for EV drivers, was reported in a Texas Trends survey to only have 5.1 percent of residents drive an electric-powered car, truck, or SUV.

Caleb Jud of Cincinnati said he’s considering an EV, but may end up with a plug-in hybrid — if he goes electric. While Cincinnati winters aren’t extremely cold, “the thought of getting stuck in the driveway with an EV that won’t run is worrisome, and I know it wouldn’t be an issue with a plug-in hybrid,″ he said. Freezing temperatures can slow chemical reactions in EV batteries, depleting power and reducing driving range.

A new rule from the Environmental Protection Agency requires that about 56% of all new vehicle sales be electric by 2032, along with at least 13% plug-in hybrids or other partially electric cars. Auto companies are investing billions in factories and battery technology in an effort to speed up the switch to EVs to cut pollution, fight climate change — and meet the deadline.

EVs are a key part of Biden’s climate agenda. Republicans led by presumptive nominee Donald Trump are turning it into a campaign issue.

Younger people are more open to eventually purchasing an EV than older adults. More than half of those under 45 say they are at least “somewhat” likely to consider an EV purchase. About 32% of those over 45 are somewhat likely to buy an EV, the poll shows.

But only 21% of U.S. adults say they are “very” or “extremely” likely to buy an EV for their next car, according to the poll, and 21% call it somewhat likely. Worries about cost are widespread, as are other practical concerns.

Range anxiety – the idea that EVs cannot go far enough on a single charge and may leave a driver stranded — continues to be a major reason why many Americans do not purchase electric vehicles.

About half of U.S. adults cite worries about range as a major reason not to buy an EV. About 4 in 10 say a major strike against EVs is that they take too long to charge or they don’t know of any public charging stations nearby.

Concern about range is leading some to consider gas-engine hybrids, which allow driving even when the battery runs out. Jud, a 33-year-old operations specialist and political independent, said a hybrid "is more than enough for my about-town shopping, dropping my son off at school'' and other uses.

With EV prices declining, cost would not be a factor, Jud said — a minority view among those polled. Nearly 6 in 10 adults cite cost as a major reason why they would not purchase an EV.

Price is a bigger concern among older adults.

The average price for a new EV was $52,314 in February, according to Kelley Blue Book. That's down by 12.8% from a year earlier, but still higher than the average price for all new vehicles of $47,244, the report said.

Jose Valdez of San Antonio owns three EVs, including a new Mustang Mach-E. With a tax credit and other incentives, the sleek new car cost about $49,000, Valdez said. He thinks it's well worth the money.

"People think they cost an arm and a leg, but once they experience (driving) an EV, they'll have a different mindset,'' said Valdez, a retired state maintenance worker.

The 45-year-old Republican said he does not believe in climate change. “I care more about saving green” dollars, he said, adding that he loves the EV's quiet ride and the fact he doesn't have to pay for gas or maintenance. EVs have fewer parts than gas-powered cars and generally cost less to maintain. Valdez installed his home charger himself for less than $700 and uses it for all three family cars, the Mustang and two older Ford hybrids.

With a recently purchased converter, he can also charge at a nearby Tesla supercharger station, Valdez said.

About half of those who say they live in rural areas cite lack of charging infrastructure as a major factor in not buying an EV, compared with 4 in 10 of those living in urban communities.

Daphne Boyd, of Ocala, Florida, has no interest in owning an EV. There are few public chargers near her rural home “and EVs don’t make any environmental sense,″ she said, citing precious metals that must be mined to make batteries, including in some countries that rely on child labor or other unsafe conditions. She also worries that heavy EV batteries increase wear-and-tear on tires and make the cars less efficient. Experts say extra battery weight can wear on tires but say proper maintenance and careful driving can extend tire life.

Boyd, a 54-year-old Republican and self-described farm wife, said EVs may eventually make economic and environmental sense, but “they’re not where they need to be” to convince her to buy one now or in the immediate future.

Ruth Mitchell, a novelist from Eureka Springs, Arkansas, loves her 2017 Chevy Volt, a plug-in hybrid that can go about 50 miles on battery power before the gas engine takes over. “It’s wonderful — quiet, great pickup, cheap to drive. I rave about it on Facebook,″ she said.

Mitchell, a 70-year-old Democrat, charges her car at home but says there are several public chargers near her house if needed. She’s not looking for a new car, Mitchell said, but when she does it will be electric: “I won't drive anything else.''

___

The AP-NORC poll of 6,265 adults was conducted March 26 to April 10, 2024 using a combined sample of interviews from NORC’s probability-based AmeriSpeak Panel, which is designed to be representative of the U.S. population, and interviews from opt-in online panels. The margin of sampling error for all respondents is plus or minus 1.7 percentage points. The AmeriSpeak panel is recruited randomly using address-based sampling methods, and respondents later were interviewed online or by phone.

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Photo via Getty Images

Texas ranked as among the worst states for EV drivers

yikes

You’d think that producing tens of thousands of Teslas might help drive up Texas’ standing among the best states for owning an electric vehicle. To the contrary, Texas ranks among the worst states to be an EV owner.

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Washington leads the pack of the worst EV states. Topping the list of the best states for EV owners is Maine, followed by Colorado and Vermont.

The ranking judged each state on these factors:

  • Number of registered EVs
  • Number of EVs per charging port
  • Ratio of one square mile per charging port
  • Cost of electricity
  • Annual cost savings for EV owners
  • Number of EVs per service center
  • EV tax credits

“Texas has cheaper electricity but a bad ratio of EVs registered to charging ports and service centers. The annual savings on gas money is only about $1,000, and there are no tax incentives,” says EV Charger Reviews.

Texas’ ranking stands in contrast to the presence in Austin of Tesla’s headquarters and a Tesla factory. The more than 10 million-square-foot, 25,000-acre factory serves as the U.S. manufacturing hub for Tesla’s electric-powered Model Y car and Cybertruck.

While thousands of Texans are driving Teslas and other EVs, they’re definitely in the minority.

Survey findings released in November 2023 by the University of Houston and Texas Southern University showed that only five percent of Texas motorists who were questioned drove an electric-powered car, truck, or SUV.

Nearly 60 percent of those who didn’t drive EVs said they wouldn’t consider buying one. Almost half (46 percent) cited the lack of charging stations as their chief reason for not wanting to own an EV.

“With such a small percentage of Texans currently owning electric vehicles, it looks like Texans will hold tight to their gas engines for the foreseeable future. Government incentives … have yet to make a difference among the state’s vehicle buyers,” according to a UH news release about the survey.

“But as charging stations grow in number, costs of operation decrease and — most important, the technology allows longer driving ranges — perhaps electric vehicles will start to earn their place in the garages of Texans.”

A Texas law that took effect in 2023 requires an EV owner to pay an extra $200 fee when they renew their vehicle registration or an extra $400 fee for their initial two-year registration.

Mercedes-Benz HPC North America says it will build EV charging hubs at most Buc-ee’s stores, starting with about 30 hubs by the end of 2024. Photo courtesy of Mercedes

Texas gas station favorite scores Mercedes-Benz partnership for EV chargers

plugging in

Buc-ee’s, the beloved Lake Jackson-based chain of convenience stores, has plugged into a partnership with a Mercedes-Benz business unit to install electric vehicle charging stations at Buc-ee’s locations.

Mercedes-Benz HPC North America says it will build EV charging hubs at most Buc-ee’s stores, starting with about 30 hubs by the end of 2024. Some Buc-ee’s hubs already are being set up and are scheduled to begin supplying EV power by the end of this year.

Mercedes-Benz HPC, a subsidiary of the German automaker, is developing a U.S. and Canadian network of EV charging stations. All of the stations will run solely on renewable energy.

“Buc-ee’s values people and partnerships,” Jeff Nadalo, general counsel at Buc-ee’s, says in a news release. “Our new collaboration with Mercedes-Benz HPC North America will continue our traditions of elevated customer convenience and excellent service that have won the hearts, trust, and business of millions in the South for more than 40 years.”

Buc-ee’s — hailed for its squeaky-clean restrooms, abundance of fuel pumps, and unique food — operates 34 supersized convenience stores in Texas and 12 locations in other states. Another seven locations are under construction in Texas, Colorado, Kentucky, Mississippi, and Missouri.

“Mercedes-Benz HPC North America's collaboration with Buc-ee’s represents an important moment in our pursuit of a national charging network that sets a new standard in both convenience and quality,” says Andrew Cornelia, president and CEO of Mercedes-Benz HPC.

“Within a remarkably short period,” Cornelia adds, “we’ve made significant strides towards opening several charging hubs at Buc-ee’s travel centers. Buc-ee’s strategic locations along major travel routes, combined with their commitment to clean and accessible amenities, aligns perfectly with our vision.”

In January 2023, Mercedes-Benz announced plans to install 10,000 EV chargers worldwide, including North America, Europe, and China. Mercedes-Benz drivers will be able to book a charging station from their car, but the network will be available to all motorists.

“The locations and surroundings of the Mercedes-Benz charging hubs will be carefully selected with wider customer needs in mind. Our best possible charging experience will therefore come with food outlets and restrooms situated nearby,” says Mercedes-Benz HPC.

Each hub will feature four to 12 chargers and ultimately as many as 30 chargers.

Mercedes-Benz says more than $1 billion is being invested in the North American charging network, which is set to be completed by 2029 or 2030. The cost will be split between the automaker and solar power producer MN8 Energy, a New York City-based spinoff of banking giant Goldman Sachs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”

Chevron enters lithium market with Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.