Halliburton has named its latest cohort. Photo courtesy of Halliburton

Seven companies from around the world have been invited to join Halliburton Labs, the company announced today.

Halliburton Labs is an incubator program that helps early-stage energy tech companies through connections, access to facilities, and more.

"We are pleased to welcome these promising energy startups and provide customized support to help them achieve their specific priorities, accelerate commercialization, and increase valuation," says Dale Winger, managing director of the program, in a news release. "Our experienced practitioners and network will help these companies use their time and capital efficiently."

The next Halliburton Labs Finalists Pitch Day, which will feature the ongoing cohort, is planned for Thursday, March 14, in New Orleans in coordination with New Orleans Entrepreneur Week and 3rd Coast Venture Summit. Applications for the program are open until Friday, February 9.

The newest additions to Halliburton Labs are as follows.

One of three Israel-based companies in the cohort, Airovation Technologies is advancing carbon capture and utilization solutions through helping hard-to-abate industries that achieve emissions reduction targets through its proprietary carbon mineralization technology. Through transforming point-source CO2 emissions into circular chemicals and building materials, Airovation is developing a scalable pathway for industrial emitters to decarbonize with multiple revenue streams.

“Industrial emitters are seeking economic ways to decarbonize,” Marat Maayan, founder and CEO at Airovation Technologies, says. “We are excited to accelerate our commercialization in the United States with Halliburton Labs, leveraging their expertise, capabilities and network."

Ayrton Energy, based in Calgary, is developing liquid organic hydrogen carrier storage technology to enable the large-scale, efficient transportation of hydrogen over extended distances without hydrogen loss and pipeline corrosion. This storage technology provides a high-density hydrogen storage medium without the need for cryogenics or high-pressure systems, which differs from the existing technology out there. This improves the safety and efficiency of hydrogen storage while enabling the use of existing fuel infrastructure for transportation, including tanks, transport trucks, and pipelines.

“Our mission is to enable hydrogen adoption by solving the key challenges in hydrogen storage and transportation,” Ayrton CEO Natasha Kostenuk says.

Cache Energy, based out of the University of Illinois Research Park, is developing a new long duration energy storage solution, which scales to interseasonal durations, through a low-cost solid fuel. Once charged, the storage material stores energy at room temperature, with near zero loss in time and can be safely stored and transported anywhere energy is needed.

“We are strong believers of leveraging existing infrastructure and expertise to fast track decarbonization goals,” Arpit Dwivedi, founder and, says CEO of Cache Energy. “We look forward to this collaboration and learning from Halliburton's manufacturing and operational expertise, as we scale our technology.”

From Be'er Sheva City in Israel, CENS develops enhanced dry dispersion technology based on dry-treated carbon nanotubes that enable high energy density, high power, and outstanding cycle performance in Li-ion batteries. The technology is differentiated because it can be applied to any type of lithim-ion battery and its implementation can be seamlessly integrated into the production line.

“Our goal is to develop ground-breaking technologies that will become disruptive technologies to market at a massive scale,” says CEO Moshe Johary. “With the help and vast experience of Halliburton Labs' team, we could achieve advancements in production capabilities while extending our footprint in the market.”

Casper, Wyoming-based Disa Technologies provides solutions to the mining and remediation industries. Disa utilizes patented minerals liberation technology to more efficiently isolate target minerals and mitigate environmental impacts to its users. Disa platforms treat a wide array of critical minerals that are essential to the economy and our way of life.

“We are excited to have Halliburton's support as we scale-up our technology and deliver innovative minerals processing solutions that disrupt industry best practices, enhance global resource utilization, and benefit the environment and the communities we serve," Greyson Buckingham, Disa's CEO and president, says.

Marel Power Solutions, headquartered from Michigan, is innovating electrification through its novel powerstack technology. These materials-efficient, quickly deployable, and scalable power-stacks, encapsulating advanced cooling technology, redefine power conversion in mobility, industrial, and renewables spaces.

“We're thrilled to contribute to global climate sustainability. Our collaboration with Halliburton will accelerate the electrification transition across industries. Marel's technology not only maximizes heat evacuation from densely packed power semiconductors but, more importantly, offers substantial savings in cost, weight, size, and time, making it transformative in the evolving landscape of electrification,” Marel CEO Amrit Vivekanand says.

And lastly, XtraLit is an Israeli company that develops a technology for direct lithium extraction from brines. The technology enables efficient and economically justified processing of brines even with relatively low lithium concentrations. Application of the extraction technology will allow mineral providers to unlock new significant sources of lithium that are critical to meet growing demand.

“Oil and gas industry produced waters might become a substantial resource for lithium production,” says XtraLit CEO, Simon Litsyn. “XtraLit will cooperate with Halliburton on optimization of produced water treatment for further increasing the efficiency of the lithium extraction process.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ERCOT to capture big share of U.S. solar power growth through 2027

solar growth

Much of the country’s growth in utility-scale solar power generation will happen in the grid operated by the Electric Reliability Council of Texas (ERCOT), according to a new forecast.

The U.S. Energy Information Administration (EIA) predicts that solar power supplied to the ERCOT grid will jump from 56 billion kilowatt-hours in 2025 to 106 billion kilowatt-hours by the end of 2027. That would be an increase of 89 percent.

In tandem with the rapid embrace of solar power, EIA anticipates battery storage capacity for ERCOT will expand from 15 gigawatts in 2025 to 37 gigawatts by the end of 2027, or 147 percent.

EIA expects utility-scale solar to be the country’s fastest-growing source of power generation from 2025 to 2027. It anticipates that this source will climb from 290 billion kilowatt-hours last year to 424 billion kilowatt-hours next year, or 46 percent.

Based on EIA’s projections, ERCOT’s territory would account for one-fourth of the country’s utility-scale solar power generation by the end of next year.

“Solar power and energy storage are the fastest-growing grid technologies in Texas, and can be deployed more quickly than any other generation resource,” according to the Texas Solar + Storage Association. “In the wholesale market, solar and storage are increasing grid reliability, delivering consumer affordability, and driving tax revenue and income streams into rural Texas.”

Expert: Why Texas must make energy transmission a top priority in 2026

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.