Vicki Hollub, president and CEO of Occidental, said the company's Stratos DAC project is on track to begin capturing CO2 later this year. Photo via 1pointfive.com

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal credits from 1PointFive's DAC facility in Texas. Photo via 1pointfive.com

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Oxy, which broke ground on its DAC project Stratos earlier this year, has secured a $550 million commitment from a financial partner. Photo via 1pointfive.com

Oxy subsidiary gets $550M boost to form new CCUS joint venture

howdy, partner

Occidental Petroleum’s direct air capture (DAC) initiative just got a more than half-a-billion-dollar investment from Blackrock, the world’s largest asset management company.

Houston-based Occidental announced November 7 that on behalf of its investment clients, BlackRock has agreed to pump $550 million into the DAC facility, called Stratos, that Oxy is building in the Midland-Odessa area. The investment will be carried out through a joint venture between BlackRock and Oxy subsidiary 1PointFive, which specializes in carbon capture, utilization, and sequestration (CCUS).

A groundbreaking ceremony for Stratos — being billed as the world’s largest DAC operation — was held in April 2023. Construction is scheduled to be completed in mid-2025. The facility is expected to capture up to 500,000 metric tons of carbon dioxide each year.

Among the organizations that have agreed to buy carbon removal credits from 1Point5 are Amazon, Airbus, All Nippon Airways, TD Bank, the Houston Astros, and the Houston Texans.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Vicki Hollub, president and CEO of Oxy, says the joint venture with BlackRock demonstrates that DAC is “becoming an investable technology.”

“We believe that BlackRock’s expertise across global markets and industries makes them the ideal partner to help further industrial-scale [DAC],” she says.

DAC removes CO2 from the atmosphere then stores it in underground geological formations.

“Occidental’s technical expertise brings unprecedented scale to this cutting-edge decarbonization technology,” says Larry Fink, chairman and CEO of BlackRock.

He adds that Stratos “represents an incredible investment opportunity for BlackRock’s clients to invest in this unique energy infrastructure project and underscores the critical role of American energy companies in climate technology innovation.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”