Honeywell launched the Battery Manufacturing Excellence Platform, or Battery MXP. Photo via honeywell.com

As the world continues to electrify, new optimized battery technology is critical, and Honeywell, which has a unit of its business based in Houston, recognizes that.

Honeywell (NASDAQ: HON) launched the Battery Manufacturing Excellence Platform, or Battery MXP, an artificial intelligence-powered software solution that will improve battery cell yields and, by extension, operation of gigafactories for manufacturers.

"With Honeywell's Battery MXP and its automation capabilities, we will be able to quickly and effectively establish a foundation for our network of gigafactories," John Kem, president of American Battery Factory, says in a statement. "This solution is vital in our manufacturing operation because it allows us to reduce scrap and scale up quickly, while also ensuring we meet the U.S. and international demand for high quality lithium iron phosphate batteries as we prepare for the unprecedented surge expected over the next decade."

The AI technology built into the platform can detect and remediate quality issues, preventing scrapped or wasted material. Per the news release, the platform can reduce startup material scrap rates by 60 percent.

"The electrification of everyday life continues to increase global demand for quality lithium-ion batteries to power electric vehicles, consumer electronics and battery energy storage systems," Pramesh Maheshwari, president of Honeywell Process Solutions, adds. "With the construction of more than 400 gigafactories planned worldwide by 2030, Honeywell's Battery MXP is a crucial technology that enables manufacturers to maximize cell yields and reach peak production much quicker than traditional methods."

Battery MXP can provide real-time information from raw material sage to finished product. The platform additionally creates enhanced safety measures.

Last month, Weatherford and Honeywell announced the partnership that will combine Honeywell's emissions management suite with Weatherford's technology.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

reduce, recharge, recycle

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.