Weatherford International has partnered with Abu Dhabi-based AIQ to scale processes and boost efficiency with the use of AI. Photo via Getty Images

Houston-headquartered oilfield service company Weatherford International announced a strategic Memorandum of Understanding (MOU) with AIQ, an Abu Dhabi-based artificial intelligence company, to develop innovative solutions for the energy sector.

"We are excited to partner with AIQ to bring innovative, AI-driven solutions to the oil and gas industry,” Girish Saligram, president and CEO of Weatherford, said in a news release. “This strategic partnership allows us to deliver cutting-edge technologies that empower our customers to maximize their operational efficiency, enhance automation, and reduce costs. By combining our strengths, we are leading the way in helping operators modernize their workflows and achieve greater success in today's rapidly evolving energy landscape.”

The collaboration aims to use Weatherford's software and hardware solutions with AIQ's AI-driven systems. Weatherford and AIQ hope this union will significantly enhance operational efficiency across global oil and gas facilities, help operators to optimize their production workflows and reduce downtime.

The companies have developed the new Modern Edge Integration, which will combine AIQ's AI technology with Weatherford's Modern Edge program. It will enable operators to scale their work processes.

In addition, Weatherford's Universal Normalizer will work with AIQ's capabilities to combine operational and financial analysis. Customers will also now be able to procure software needs via a comprehensive industrial SaaS platform with the WFRD Software Launchpad, which can eliminate the issues associated with managing multiple systems and vendors, and provide a single point of access for all Weatherford and partner-built applications.

"This partnership marks another step in AIQ's mission to build partnerships that accelerate the deployment of impactful AI systems across the energy value chain,” Magzhan Kenesbai, Acting Managing Director of AIQ, said in a news release. “By integrating our advanced AI-driven tools with Weatherford's energy-specific technology, we are driving greater efficiencies to the industry through the development of scalable, automated applications. Together, we are set to empower operators to optimize their workflows, reduce downtime, and achieve unparalleled operational excellence.”

Here are five things to know from CERAWeek this year. Photo courtesy of CERAWeek

Hot rocks, AI, and more — 5 themes and takeaways from CERAWeek 2024 in Houston

things to know

The 2024 edition of CERAWeek by S&P Global wrapped up last Friday in Houston, and a handful of themes emerged as topical and disruptive amid the energy transition.

Here are five takeaways from the conference, according to EnergyCapital reporting.

Funding the energy transition continues to be a challenge.

Photo courtesy of CERAWeek

The biggest obstacle to the energy transition is — and might always be — funding it. A panel at Agora on Thursday, March 21, moderated by Barbara Burger set out to discuss the role of venture capital amid the future of energy.

Daniel Goldman, managing partner at Clean Energy Ventures, said that the first plants for these new, revolutionary technologies are going to be more expensive than its subsequent plants.

"But you have to built it," Goldman says. "'First of a kind' can be very different from the end plant, because you need to manage risk. ... But those first plants are going to be quite costly, and you're going to have to recognize that as an investor."

Microsoft and Breakthrough Ventures Founder Bill Gates would address this in his talk later that day, pointing out that traditional infrastructure investors are used to knowing what a plant would cost before its built. But in clean tech, outside of solar and wind, there's too much unknown to give the estimation those investors are looking for.

"Nothing's at the maturity level that you can do that," Gates says.

The DOE's role of de-risking green tech.

Photo courtesy of CERAWeek

The United States Department of Energy had a significant presence at CERAWeek, with Secretary of Energy Jennifer M. Granholm making two major announcements on Monday, March 18, the first day of the conference. One of the announcements was the DOE's latest Pathways to Commercial Liftoff report, which are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"We develop these Liftoff Reports through a combination of modeling and hundreds and hundreds of interviews with people across the whole investment lifecycle—from early-stage capital to commercial banks and institutional investors," Granholm says in her address, announcing geothermal energy as the subject of the ninth report.

Intended to "create a common fact base and a tool for ongoing dialogue with the private sector on the pathways to commercial liftoff," according to the DOE, these reports can be instrumental for enterprises in the field.

A panel at Agora on Thursday, March 21, featuring geothermal energy innovators discussed the impact of the report. Tim Latimer, CEO and founder of Houston-based Fervo Energy, says the report included details from his company's work.

To Latimer, the report showcases geothermal energy's ability to compete from a cost perspective.

"I think geothermal is already winning that cost discussion," Latimer says. "You're talking about $45 per megawatt hour unsubsidized cost for round-the-clock, 24/7 carbon-free energy. I think that's an achievable ambition the DOE set out, and I think it's an unbeatable value proposition.

Hot topic: Geothermal energy.

Photo courtesy of CERAWeek

Geothermal energy was discussed throughout the week following Granholm's address, in part because of its expected cost efficiency, but also because it's a type of energy that should provide a smooth transition from traditional oil and gas.

John Redfern, CEO of Eavor Technologies, global geothermal technology company headquartered in Canada, says on the geothermal panel that the geothermal industry can build off existing infrastructure.

"Most of it is building blocks that we're recycling from the oil industry — resources, people, technologies," Redfern says. "So, it's more about implementing rather than inventing some new, novel product."

Latimer agrees, adding that Fervo "is fully in the deployment phase."

"The breakthrough needed to make geothermal ready for primetime have already happened," Latimer says.

AI is everywhere — especially the energy transition.

Photo courtesy of CERAWeek

The topic of artificial intelligence was everywhere, so much that by Thursday, panelists joked about every discussion including at least one mention of the technology.

Gates was one speaker who addresses the subject, which isn't all too surprising, since Microsoft owns a portion of OpenAI, which created ChatGPT. One thing left to be known is how directly AI will affect the energy transition — and on what timeline.

AI's current applications are within white collar activities, Gates explains, citing writing a regulatory permit or looking at evidence in a lawsuit. He explains that current AI capabilities could continually grow or remain stagnant for a while, he isn't sure.

"The thing that’s daunting is we don’t know how quickly it will improve," he adds.

Gates didn't comment on energy specific AI applications but noted that AI has advanced far past robotics, which would target blue collar roles.

Big tech sees green.

Photo courtesy of CERAWeek

And speaking of AI, big tech companies have been making moves to lower carbon footprints, and that was made clear by the activations at CERAWeek. Microsoft and Amazon each had designated houses at the conference, alongside Oxy, Chevron, Aramco, and other traditional energy players.

At Microsoft, Houston-based Amperon, which recently announced a partnership with the tech company, presented and pitched their company. The Microsoft and Amazon houses showcased each company's low-carbon technologies.

Hear from guest columnist Onega Ulanova on AI and quality management systems in manufacturing. Photo via Getty Images

Expert: How AI is disrupting manufacturing and the future of quality management systems

guest column

The concept of quality management is so intrinsic to modern manufacturing — and yet so little understood by the general public — and has literally revolutionized our world over the past hundred years.

Yet, in the present day, quality management and the related systems that guide its implementation are far from static. They are continuously-evolving, shifting to ever-changing global conditions and new means of application unleashed by technological innovation.

Now, more than ever, they are essential for addressing and eliminating not only traditional sources of waste in business, such as lost time and money, but also the physical and pollutant waste that threatens the world we all inhabit.

But what are quality management systems, or QMS, exactly? Who created them, and how have they evolved over time? Perhaps most pressingly, where can they be of greatest help in the present world, and when can they be implemented by businesses in need of change and improvement?

In this article, we will explore the history of QMS, explain their essential role in today’s manufacturing practices, and examine how these systems will take us into the future of productivity.

Quality Management Systems: A Definition

In the United States and globally, the gold standard of quality management standards and practices is the American Society for Quality. This preeminent organization, with over 4,000 members in 130 countries, was established in 1946 and has guided practices and implementation of quality management systems worldwide.

The Society defines a quality management system as “a formalized system that documents processes, procedures, and responsibilities for achieving quality policies and objectives,” and further states that “a QMS helps coordinate and direct an organization’s activities to meet customer and regulatory requirements and improve its effectiveness and efficiency on a continuous basis.”

From this definition, it can be understood that a good quality management system’s purpose is to establish the conditions for consistent and ever-increasing improvement through the use of standardized business culture practices.

Which QMS Standards are Most Widely Used?

The results of quality management’s remarkable growth since the 1940s has led to the rise of a number of widely-used standards, which can serve as the basis for companies and organizations to design and implement their own practices. Most of these modern quality management standards are globally recognized, and are specifically tailored to ensure that a company’s newly-developed practices include essential elements that can increase the likelihood of success.

The most widely-known entity which has designed such guidance is the International Organization for Standardization (ISO), a global organization which develops and publishes technical standards. Since the 1980s, the ISO has provided the 9000 series of standards (the most famous of which is 9001:2015) which outline how organizations can satisfy the checklists of quality management requirements and create their own best practices.

In 2020, over 1.2 million organizations worldwide were officially certified by the ISO for their quality management implementation practices.

However, it should be understood that the ISO 9000 standards are merely guidelines for the design and implementation of a quality management system; they are not systems in and of themselves.

Furthermore, the ISO is far from the only relevant player in this field. Many industry-specific standards, such as the American Petroleum Institute’s API Q1 standard, have been developed to target the highly specialized needs of particular business practices of oil and gas industry. These industry-specific standards are generally aligned with the ISO 9000 standards, and serve as complimentary additional guidance, rather than a replacement. It is entirely possible, and in many cases desirable, for a company to receive both ISO certification and certification from an industry-specific standards body, as doing so can help ensure the company’s newly-developed QMS procedures are consistent with both broad and specialized best practices.

A History of Quality Management

The concept of quality management is intrinsically tied to the development of industrial production. Previous to the industrial revolution, the concept of ‘quality’ was inherently linked to the skill and effort of craftspeople, or in other words, individual laborers trained in specialized fields who, either individually or in small groups, produced goods for use in society.

Whether they were weaving baskets or building castles, these craftspeople were primarily defined by a skill that centered them in a specific production methodology, and it was the mastery of this skill which determined the quality. Guilds of craftspeople would sign their works, placing a personal or group seal on the resulting product and thereby accepting accountability for its quality.

Such signatures and marks are found dating back at least 4,500 years to the construction of Egypt’s Great Pyramid of Giza, and came into widespread practice in medieval Europe with the rise of craft guilds.

In these early confederations of workers, a person’s mastery of a skill or craft could become a defining part of their identity and life, to the extent that many craftspeople of 13th Century Europe lived together in communal settings, while the Egyptian pyramid workers may have belonged to life-long ‘fraternities’ who returned, year after year, to fulfill their roles in ‘work gangs’.

However, in the Industrial Revolution, craft and guild organizations were supplanted by factories. Though ancient and medieval projects at times reached monumental scale, the rise of thousands of factories, each requiring human and machine contributions to generate masses of identical products, required a completely different scale of quality management.

The emphasis on mass production necessitated the use of workers who were no longer crafts masters, and thus resulted in a decrease in the quality of products. This in turn necessitated the rise of the product inspection system, which was steadily refined from the start of the Industrial Revolution in 1760 into the early 20th century.

However, inspection was merely a system of quality control, rather than quality management; in other words, simply discarding defective products did not in and of itself increase total product quality or reduce waste.

As influential American engineer Joseph M. Juran explained, in 1920s-era America, it was common to throw away substantial portions of produced inventory due to defects, and when Juran prompted inspectors at his employer’s company to do something, they refused, saying it was the responsibility of the production line to improve. Quality control, in and of itself, would not yield quality management.

As is often the case in human history, war was the driver of change. In World War II, the mobilization of millions of American workers into wartime roles coincided with the need to produce greater quantities of high-quality products than ever before.

To counteract the loss of skilled factory labor, the United States government implemented the Training Within Industry program, which utilized 10-hour courses to educate newly-recruited workers in how to conduct their work, evaluate their efficiency, and suggest improvements. Similar training programs for the trainers themselves were also developed. By the end of the war, more than 1.6 million workers had been certified under the Training Within Industry program.

Training Within Industry represented one of the first successful implementations of quality management systems, and its impact was widely felt after the end of the war. In the ashes of conflict, the United States and the other Allied Powers were tasked with helping to rebuild the economies of the other wartime combatants. Nowhere was this a more pressing matter than Japan, which had seen widespread economic devastation and had lost 40 percent of all its factories. Further complicating the situation was the reality that, then as now, Japan lacked sufficient natural resources to serve its economic scale.

And yet, within just 10 years of the war’s end, Japan’s economy war growing twice as fast per year than it had been before the fighting started. The driver of this miraculous turnaround was American-derived quality management practices, reinterpreted and implemented with Japanese ingenuity.

In modern business management, few concepts are as renowned, and oft-cited for success, as kaizen. This Japanese word, which simply means “improvement,” is the essential lesson and driver of Japan’s postwar economic success.

Numerous books written outside Japan have attempted to explain kaizen’s quality management principles, often by citing them as being ‘distinctly Japanese.’ Yet, the basis for kaizen is actually universal and applicable in any culture or context; it is, simply put, an emphasis on remaining quality-focused and open to evolution. The development of kaizen began in the post-war period when American statistician William Edwards Deming was brought to Japan as part of the US government’s rebuilding efforts.

A student of earlier quality management thought leaders, Deming instructed hundreds of Japanese engineers, executives, and scholars, urging them to place statistical analysis and human relationships at the center of their management practices. Deming used statistics to track the number and origin of product defects, as well to analyze the effectiveness of remedies. He also reinstated a key idea of the craftsperson creed: that the individual worker is not just a set of hands performing a task, but a person who can, with time, improve both the self and the whole of the company.

Deming was not alone in these efforts; the aforementioned Joseph M. Juran, who came to Japan as part of the rebuilding program several years later, also gave numerous lectures expounding similar principles.

Like Deming, Juran had previously tried to impart these approaches to American industry, but the lessons often fell on deaf ears. Japanese managers, however, took the lessons to heart and soon began crafting their own quality management systems.

Kaoru Ishikawa, who began by translating the works of Deming and Juran into Japanese, was one of the crucial players who helped to create the ideas now known as kaizen. He introduced a bottom-up approach where workers from every part of the product life cycle could initiate change, and popularized Deming’s concept of quality circles, where small groups of workers would meet regularly to analyze results and discuss improvements.

By 1975, Japanese product quality, which had once been regarded as poor, had transformed into world-class thanks to the teachings of Deming, Juran, and kaizen.

By the 1980s, American industry had lost market share and quality prestige to Japan. It was now time for US businesses to learn from Deming and Juran, both of whom at last found a receptive audience in their home country. Deming in particular achieved recognition for his role in the influential 1980 television documentary If Japan Can, Why Can’t We?, in which he emphasized the universal applicability of quality management.

So too did kaizen, which influenced a new generation of global thought leaders. Arising out of this rapid expansion of QMS were new systems in the 1970s and ‘80s, including the Six Sigma approach pioneered by Bill Smith and Motorola in 1987. Ishikawa, who saw his reputation and life transformed as his ideas spread worldwide, eventually summed up the explanation as the universality of human nature and its desire to improve. As Ishikawa said, “wherever they are, human beings are human beings”.

In no small part due to the influence of the thought leaders mentioned, quality management systems are today a cornerstone of global business practice. So influential are the innovators of these systems that they are often called ‘gurus.’ But what are the specific benefits of these systems, and how best can they be implemented?

How QMS Benefits Organizations, and the World

The oft-cited benefits of quality management systems are operational efficiency, employee retention, and reduction of waste. From all of these come improvements to the company’s bottom line and reputation. But far from being dry talking points, each benefit not only serves its obvious purpose, but also can dramatically help benefit the planet itself.

Operational efficiency is the measurement, analysis, and improvement of processes which occur within an organization, with the purpose of utilizing data and consideration to eliminate or mediate any areas where current practices are not effective.

Quality management systems can increase operational efficiency by utilizing employee analysis and feedback to quickly identify areas where improvements are possible, and then to guide their implementation.

In a joint study conducted in 2017 by Forbes and the American Society for Quality, 56 percent of companies stated that improving operational efficiency was a top concern; in the same survey, 59 percent of companies received direct benefit to operations by utilizing quality management system practices, making it the single largest area of improvement across all business types.

Because operational improvements inherently reduce both waste and cost, conducting business in a fully-optimized manner can simultaneously save unnecessary resource expenditure, decrease pollutants and discarded materials, and retain more money which the company can invest into further sustainable practices. Efficiency is itself a kind of ‘stealth sustainability’ that turns a profit-focused mindset into a generator of greater good. It is this very point that the

United States government’s Environmental Protection Agency (EPA) has emphasized in their guidance for Environmental Management Systems (EMS). These quality management system guidelines, tailored specifically to benefit operational efficiency in a business setting, are also designed to benefit the global environment by utilizing quality management practices.

Examples in the EPA’s studies in preparing these guidelines showcased areas where small companies could reduce environmental waste, while simultaneously reducing cost, in numerous areas. These added to substantial reductions and savings, such as a 15 percent waste water reduction which saved a small metal finishing company $15,000 per year.

Similarly, a 2020 study by McKinsey & Company identified ways that optimizing operations could dramatically aid a company’s sustainability with only small outlays of capital, thereby making environmental benefit a by-product of improved profitability.

Employee retention, and more broadly the satisfaction of employees, is another major consideration of QMS. Defined simply, retention is not only the maintenance of a stable workforce without turnover, but the improvement of that workforce with time as they gain skill, confidence, and ability for continued self and organizational improvement. We may be in the post-Industrial Revolution, but thanks to the ideas of QMS, some of the concept of the craftsperson has returned to modern thinking; the individual, once more, has great value.

Quality management systems aid employee retention by allowing the people of an organization to have a direct hand in its improvement. In a study published in 2023 by the journal Quality Innovation Prosperity, 40 percent of organizations which implemented ISO 9001 guidance for the creation of a QMS reported that the process yielded greater employee retention.

A crucial success factor for employee satisfaction is how empowered the employee feels to apply judgment. According to a 2014 study by the Harvard Business Review, companies which set clear guidelines, protect and celebrate employee proposals for quality improvement, and clearly communicate the organization’s quality message while allowing the employees to help shape and implement it, have by far the highest engagement and retention rates. The greatest successes come from cultures where peer-driven approaches increase employee engagement, thereby eliminating preventable employee mistakes. Yet the same study also pointed out that nearly half of all employees feel their company’s leadership lacks a clear emphasis on quality, and only 10 percent felt their company’s existing quality statements were truthful and viable.

Then as now, the need to establish a clear quality culture, to manage and nurture that culture, and to empower the participants is critical to earning the trust of the employee participants and thereby retaining workers who in time can become the invaluable craftspeople of today.

Finally, there is the reduction of waste. Waste can be defined in many ways: waste of time, waste of money, waste of resources. The unifying factor in all definitions is the loss of something valuable, and irretrievable. All inevitably also lead to the increase of another kind of waste: pollution and discarded detritus which steadily ruin our shared planet.

Reducing waste with quality management can take many forms, but ultimately, all center on the realization of strategies which use only what is truly needed. This can mean both operational efficiencies and employee quality, as noted above. The Harvard Business Review survey identified that in 2014, the average large company (having 26,000 employees or more) loses a staggering $350 million each year due to preventable employee errors, many of which could be reduced, mitigated, or eliminated entirely with better implementation of quality management.

This is waste on an almost unimaginable financial scale. Waste eliminated through practices which emphasize efficiency and sustainability, as noted in the McKinsey & Company study, can also yield tremendous savings. In one example, a company which purchased asphalt and previously prioritized only the per-ton price found that, when examining the logistical costs of transporting the asphalt from distant suppliers, they were actually paying more than if they purchased it locally. The quality management analysis they performed yielded them a cost savings, and eliminated 40 percent of the carbon emissions associated with the asphalt’s procurement. In this case, not only was wasteful spending eliminated, but literal waste (pollution) was prevented.

In taking these steps, companies can meaningfully improve their bottom lines, while at the same time doing something worthwhile and beneficial for the planet. That, in turn, helps burnish their reputations. A remarkable plurality of consumers, 88 percent of Americans surveyed in a 2017 study to be exact, said they would be more loyal to a company that supports social or environmental issues.

It is therefore clear that any steps a company can take which save money, improve worker satisfaction, and yield increased positivity in the marketplace are well worth pursuing.

What is the Future of QMS?

Until the 2000s, quality management systems were just that: systems of desirable practices, outlined by individuals and implemented individually. That was the age of the gurus: the visionaries who outlined the systems. But what that age lacked was a practical and easy means for companies, sometimes located far away from direct guidance by the gurus, to implement their teachings.

In the intervening years, technology has radically changed that dynamic. Today, QMS software fills the marketplace, allowing businesses small and large to design and guide their quality management plans. But even these software solutions have not yet solved the last great challenge: personalized assistance in putting standards into practice.

That is why the latest innovations, particularly in artificial intelligence, have the potential to upend the equation. Already, major companies have started to use artificial intelligence in connection with QMS datasets managed by software, utilizing the programs for statistical analysis, suggested improvements, and even prediction of potential faults before they occur.

These are immensely valuable opportunities, hence why huge players such as Honeywell are spending billions of dollars to bring innovative AI technology companies into their platforms to refine existing QMS systems.

But while AI has already begun to significantly affect the biggest players, small and mid-sized companies remain eager, but not yet able, to take full advantage. It is thus the next great revolution for a new evolution of QMS, one which will bring these emerging technologies to all companies, regardless of size or scale. The future of QMS, and therefore the future of efficiency in business, rests upon this shift from companies being the recipients of ‘guru knowledge,’ to themselves being the designers of their own quality-minded futures.

------

Onega Ulanova is the CEO of QMS2GO, a provider of quality management systems leveraging AI in manufacturing.

This article originally ran on InnovationMap.

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. Photo via Getty Images

How AI technology is advancing a low-carbon future

the view from heti

In the midst of a continuously changing global energy landscape, industry experts, leading energy companies and corporations have rallied together for one common goal: to reach net zero by 2050. As the demand for energy increases, so does the urgency to develop more energy efficient technologies that reduce emissions.

As the world becomes more reliant on renewable energy, artificial intelligence is proving to be a major game-changer. AI is one of the world’s largest disruptors in tech to date with some tech giants pouring millions into research surrounding AI technologies.

While artificial intelligence may not be the first thing to come to mind when talking about the energy industry, it’s already proven its value in fueling the energy transition in multiple domains: improving renewable energy forecasting, grid operations, materials innovation and more. Companies like Accenture have shown how artificial intelligence can play a huge role in steering the energy transition toward a more efficient future.

As a technology services provider, Accenture bridges the gap between technology and human ingenuity to solve some of the world’s most complex issues. With more than 15 years of leadership in metaverse-related technology and more than 1,400 patents, the Accenture Metaverse team brings together metaverse-skilled professionals and market-leading capabilities across Accenture.

The Dublin, Ireland-based company recently announced plans to invest more than $3 billion in artificial intelligence and double its AI-related staff to accommodate demands. Accenture also plans to use generative AI for client work and launch an AI Navigator for Enterprise platform to help guide AI strategy, use cases, decision-making and policy.

With decades of investments and patents, Accenture is no stranger to AI. The company also recently introduced their Net Zero Metaverse, an immersive experience that allows users to explore the future of energy, at the third annual Future of Global Energy conference hosted by the Greater Houston Partnership and the Houston Energy Transition Initiative presented by Chevron. The innovative software system consists of multiple digital worlds including a Charge Stations of the Future, Energy Transition Igloo, a Space Lab and Hydrogen Heights, a renewable-powered neighborhood named after The Heights of Houston.

While Accenture is helping to shift to a more sustainable future, three ways that AI software has already transformed the way we generate, distribute and consume energy are through smart grids, optimized electricity consumption and electricity mobility.

Smart Grids
AI technology can help optimize the efficiency of smart grids, reducing the number of outages and mitigating impact for both residential and commercial customers. In its ability to analyze data collected by smart grids, AI can predict the demand of energy and adjust the flow of electricity accordingly.

Optimized electricity consumption
According to the World Economic Forum, reducing carbon emissions in buildings will be critical to achieving net zero emissions by 2050; buildings represent 39% of global greenhouse gas emissions. AI powered smart buildings and homes can help to reduce energy consumption and operating costs. With the ability to analyze data from sensors and other sources, AI software can identify patterns, predict equipment failures and maintenance needs and help building managers schedule maintenance repairs more efficiently.

Electricity mobility
According to the Congressional Budget Office, transportation is the largest source of greenhouse gas emissions in the United States with CO2 emissions representing about 97% of the global warming potential of all greenhouse emissions. AI software plays a key role in monitoring driving conditions, speed and load levels predicting the most efficient way to use available energy. AI software also helps in safety management and aids in the race to a pollution-free eco-friendly environment.

While AI technology is still advancing, and there is uncertainty in its accuracy, this breakthrough technology is shaping the future of society offering new approaches to optimize energy systems’ operation and reliability.

Learn more about what companies like Accenture are doing with AI technologies.

------------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.


Soon, you'll be able to cruise to your destination without a driver in Houston. Photo via Cruise/Facebook

Self-driving rideshare company cruises its robotaxies into Houston

LOOK MA, NO DRIVER

A new driverless ridehail service is coming to Houston: Cruise, the all-electric, driverless car company backed by GM, is expanding in Texas with launches in both Dallas and the Bayou City.

This follows an initial launch in Austin in 2022, their first city in Texas.

Cruise builds and operates driverless vehicles that you can call via an app, like any other ride hailing service. "But our vehicles show up without anyone else inside," they say.

The entire fleet is all-electric and the vehicles are equipped with a 360-view, with the ability to react to whatever they encounter on the road.

They test their vehicles using simulations, through millions of scenarios and virtual miles; they’ve also driven more than 4 million real miles, mostly in San Francisco.

They have not defined what the cost will be but according to The Verge, the rates in San Francisco vary depending on length of trip and time of day: "A customer taking a 1.3-mile trip would pay 90 cents per mile and 40 cents per minute, in addition to a $5 base fee and 1.5 percent city tax, for a total of $8.72." By comparison, an Uber ride for the same trip would cost at least $10.41.

The company was founded in 2013 and vehicles began to hit the road in 2022. They operate a total fleet of roughly 300 all-electric AVs, powered 100 percent by renewable energy. In addition to Austin, they operate in San Francisco and Phoenix, where they've completed 35,000 self-driving deliveries in a partnership with Walmart.

According to a statement from CEO Kyle Vogt, they'll begin supervised driving (with a safety driver behind the wheel) in Houston as they finetune their AI technology to understand the nuances and unique elements of the city, with Dallas to follow shortly after.

In a blog post, Vogt says their cars drive the speed limit and come to a complete stop at every stop sign. They respond to police sirens, flashing lights on fire trucks or ambulances, and stop signs that fold out of school buses.

They react to people on scooters, people using bike lanes, and cars driving on the wrong side of the road. "In short, they are designed to drive safely by obeying the law and driving in a humanlike way," he says. Actually, that sounds better than humans.

When vehicles encounter a situation where they aren’t 100 percent sure of what to do, they slow down or stop and pull over to the side of the road. This has caused some bumps in San Francisco where cars stopped and idled in the street for no apparent reason, delaying bus riders and disrupting the work of firefighters.

Some of the "bumps" have been comical, such as the 2022 incident in which a confused San Francisco police officer pulled a Cruise over, and then the Cruise drove away.

And as Reuters notes, autonomous vehicles have not rolled out as fast as anticipated, due to regulations, safety investigations, and arduous technology.

When Cruise first enters a city, they hire a mapping and data collection team to learn bike lanes, school zones, and major intersections. But most of the time, the vehicles will be carrying riders in the back seat, or completely empty and en route to another pickup.

The company partners with first responders, including police and fire departments, to ensure they’re ready and familiar with how to interact with the vehicles, engaging with those agencies before and after launch.

"Our guiding mission has always been to improve road safety, reduce emissions, and reduce congestion with our driverless ride-hail service in cities, which is where we’ll see the most significant positive impact the soonest," Vogt says. "Houston and Dallas are committed to reducing traffic deaths as part of their Vision Zero commitments, and we are excited to operate in and partner with these new communities in this shared mission."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.

6 must-attend Houston energy sector events in November 2025

Must-Attend Meetings

Editor's note: It's time to mark your calendar for November's must-attend Houston energy transition events, as they are front-loaded at the beginning fo the month. From a climatetech summit to the annual Houston Innovation Awards, these are the energy events to attend. Learn more below, and register now.

Nov. 4: Greentown Labs Climatetech Summit

Greentown Labs hosts its Houston Climatetech Summit, bringing together philanthropists, executives, and innovators in the energy transition space. Attendees will be able to explore climatetech solutions from dozens of startups, as well as hear insightful keynotes and discussions with industry leaders throughout the day.

The event begins with check-in and breakfast at 8 am on Nov. 4 at Greentown Labs. Register here.

Nov. 4-6: Operational Excellence in Oil and Gas Summit 2025

More than 300 industry leaders and change-makers will explore smarter, faster, more sustainable paths to operational excellence in the oil and gas industry at this annual three-day summit.

The event begins Nov. 4 at Norris Conference Center - City Centre Location. Register here.

Nov. 11-12: 20th Annual API Cybersecurity Conference for the Oil and Natural Gas Industry

The API Cybersecurity Conference has been an annual event since 2005. For 20 years, it has been the only cybersecurity conference dedicated to the oil and gas industry. Don't miss two days of compelling programming, networking and idea-exchange opportunities, as well as exhibitors sharing the latest products and services.

The event begins Nov. 11 at Woodlands Waterway Marriott. Register here.

Nov. 12-13: Energy Supply Chain & Procurement Summit

Senior executives from across the U.S. come to Houston, the energy capital, to discuss the energy supply chain, procurement and logistics ecosystems. The summit is focused on fostering dialogue and facilitating commercial relationships to further the mission of decarbonization and digitalization of the energy sector.

The event begins Nov. 12 at Hyatt Regency Houston West. Register here.

Nov. 13: Houston Innovation Awards

Houston's innovation ecosystem comes together for the fifth annual Houston Innovation Awards, taking place for the first time at Greentown Labs. Get your tickets to this intimate networking event and awards program, where winners in 10 prestigious categories — including Energy Transition Business, Scaleup of the Year, and Startup of the Year — will be revealed.

The event begins at 7 pm on Nov. 13 at Greentown Labs. Tickets are available here.

Nov. 14: Powering the Future via Geothermal, Lithium Extraction, and Battery Storage

Innovators and energy experts will converge for an in-depth panel discussion on how geothermal energy, lithium extraction and battery storage are shaping the next era of the low-carbon economy. At this event, hosted by Society for Low Carbon technologies, attendees will engage with thought leaders across sectors and explore how these technologies will help power a cleaner and smarter energy future.

This event begins at 9:10 am on Nov. 14 at NOV Towers. Register here.