The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photos by Jeff Fitlow/Rice University

A groundbreaking Rice University lab has made further strides in its work to make harvesting light energy more efficient and stable.

Presented on the cover of a June issue of Science, a study from Rice engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”

The change come from "seasoning" the FAPbI3 with 2D halide perovskites crystals, which the Mohite lab also developed a breakthrough synthesis process for last year

The 2D perovskites helped make the FAPbI3 films more stable. The study showed that films with 2D perovskites deteriorated after two days of generating electricity, while those with 2D perovskites had not started to degrade after 20 days.

“FAPbI3 films templated with 2D crystals were higher quality, showing less internal disorder and exhibiting a stronger response to illumination, which translated as higher efficiency," Isaac Metcalf, a Rice materials science and nanoengineering graduate student and a lead author on the study, said in the statement.

Additionally, researchers say their findings could make developing light-harvesting technologies cheaper, and can also allow light-harvesting panels to be lighter weight and more flexible.

"Perovskites are soluble in solution, so you can take an ink of a perovskite precursor and spread it across a piece of glass, then heat it up and you have the absorber layer for a solar cell,” Metcalf said. “Since you don’t need very high temperatures ⎯ perovskite films can be processed at temperatures below 150 Celsius (302 Fahrenheit) ⎯ in theory that also means perovskite solar panels can be made on plastic or even flexible substrates, which could further reduce costs.”

Mohite adds this has major implications for the energy transition at large.

“If solar electricity doesn’t happen, none of the other processes that rely on green electrons from the grid, such as thermochemical or electrochemical processes for chemical manufacturing, will happen,” Mohite said. “Photovoltaics are absolutely critical.”

The Mohite lab's process for creating 2D perovskites of the ideal thickness and purity was published in Nature Synthesis last fall. At the time, Mohite said the crystals "hold the key to achieving commercially relevant stability for solar cells."

About a year ago, the lab also published its work on developing a scalable photoelectrochemical cell. The research broke records for its solar-to-hydrogen conversion efficiency rate.
Woodside Energy has committed $12.5 million to a new partnership with Rice University. Photo via Instagram/WoodsideEnergy

Woodside Energy backs $12.5M clean energy accelerator for new technologies

howdy, partner

A global Australian energy company with its international operations in Houston has backed a new climatetech accelerator in partnership with Rice University.

Woodside Energy, headquartered in Australia with its global operations in Houston following its 2022 acquisition of BHP Group, has committed $12.5 million over the next five years to create the Woodside Rice Decarbonization Accelerator.

"The goal of the accelerator is to fast track the commercialization of innovative decarbonization technologies created in Rice labs," Rice University President Reginald DesRoches says to a crowd at the Ion at the initiative's announcement. "These technologies have the potential to make better batteries, transitistors, and other critical materials for energy technologies. In addition, the accelerator will work on manufacturing these high-value products from captured and converted carbon dioxide and methane."

"The Woodside Rice Decarbonization Accelerator will build on the work that Rice has been doing in advanced materials, energy, energy transition, and climate for many years. More than 20 percent of our faculty do some related work to energy and climate," he continues. "Harnessing their efforts alongside an esteemed partner like Woodside Energy is an exciting step that will undoubtedly have an impact far and wide."

Rice University announced the new climate tech initiative backed by Woodside Energy this week. Photo by Natalie Harms/InnovationMap

Woodside, which has over 800 employees based in Houston, has been a partner at the Ion since last spring. Daniel Kalms, Woodside Energy's CTO and executive vice president, explains that the new initiative falls in line with the three goals of Woodside's climate strategy, which includes keeping up with global energy demand, creating value, and conducting its business sustainably. The company has committed a total of $5 billion to new energy by 2030, Kalms says.

"We know that the world needs energy that is more affordable, sustainable, and secure to support the energy transition — and we want to provide that energy. Energy that is affordable, sustainable, and secure requires innovation and the application of new technology. That's what this is about," he says.

"Of course collaboration will be the key," Kalms continues. "By working with researchers, entrepreneurs, leading experts and parallel industries, we can combine our capability to solve collective challenges and create shared opportunities. That's why we are excited to be partnering with Rice."

The accelerator will be run by Paul Cherukuri, vice president of innovation at Rice University, and Aditya Mohite, associate professor of Chemical and Biomolecular Engineering and Materials Science and Nanoengineering. Additional Rice professors will be involved as well, Cherukuri says.

"Success for us will not be papers, it will be products," Cherukuri says of what Woodside wants from the partnership. "We picked faculty at Rice in particular who were interested in taking on this charge, and they were all faculty who created companies."

Last fall, Rice announced a grant and venture initiative to accelerate innovation from Rice in the biotech space.

------

This article originally ran on InnovationMap.

Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

Houston research team develops breakthrough process for light-harvesting crystals in DOE-backed project

solar success

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations.

“This research breakthrough is critical for the synthesis of 2D perovskites, which hold the key to achieving commercially relevant stability for solar cells and for many other optoelectronic device applications and fundamental light matter interactions,” Mohite said in a statement.

Traditional synthesis methods for creating 2D halide perovskites, which have been shown to offer a high-performance low-cost way to produce solar cells, have generated uneven crystal growth when attempting to reach a higher n value. And uneven crystal growth can result in a less reliable material, while a high n value can result in higher electrical conductivity, among other benefits.

The study shows how the kinetically controlled space confinement method can gradually increase n values in 2D halide perovskites, which will assist in the production of crystals with a certain thickness.

“We designed a way to slow down the crystallization and tune each kinetics parameter gradually to hit the sweet spot for phase-pure synthesis,” Jin Hou, a Ph.D. student at Rice and a lead author on a study, said in a statement.

The process is expected to improve the stability and lower the costs of emerging technologies in optoelectronics, or the study and application of light-emitting or light-detecting devices, and photovoltaics, the conversion of thermal energy into electricity.

"This work pushes the boundaries of higher quantum well 2D perovskites synthesis, making them a viable and stable option for a variety of applications,” Hou added.

Houston universities have been making major strides relating to crystallization processes in recent months.

In September, the University of Houston announced The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to establish the Welch Center for Advanced Bioactive Materials Crystallization. The center will build upon UH professor Jeffrey Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Over the summer, a team of researchers at UH also published a paper detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.
Rice University engineers have created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen. Photo courtesy Gustavo Raskoksy/Rice University

Rice University team breaks records with new sunlight-to-hydrogen device

big win

A team of Rice University engineers have developed a scalable photoelectrochemical cell that converts sunlight into clean hydrogen at a record-setting pace.

The lab led by Aditya Mohite, an associate professor at Rice, published the findings in a study in Nature Communications late last month, in collaboration with the National Renewable Energy Laboratory, which is backed by the Department of Energy. In it, the team details how they created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen.

Austin Fehr, a chemical and biomolecular engineering doctoral student at Rice and one of the study’s lead authors, says in a statement that the device "could open up the hydrogen economy and change the way humans make things from fossil fuel to solar fuel."

The device has a high solar-to-hydrogen conversion efficiency rate of 20.8 percent, which has yet to be reached with this type of technology, according to a release from Rice. In addition to its speed, this device is groundbreaking because it uses low-cost metal-halide perovskite semiconductors to power the reaction.

A photoreactor developed by Rice University’s Mohite research group and collaborators achieved a 20.8 percent solar-to-hydrogen conversion efficiency. Photo courtesy Gustavo Raskoksy/Rice University

“Using sunlight as an energy source to manufacture chemicals is one of the largest hurdles to a clean energy economy,” Fehr says in the statement. “Our goal is to build economically feasible platforms that can generate solar-derived fuels. Here, we designed a system that absorbs light and completes electrochemical water-splitting chemistry on its surface.”

To create the device the Mohite lab turned their existing solar cell into a reactor to split water into oxygen and hydrogen. However they continued running into issues with the semiconductors being "extremely unstable in water," according to Rice.

After two years of trials and errors, the team uncovered that by adding two layers of barriers to the semiconductors they were able to reach these record-breaking efficiency rates.

The team has also shown uses for their double barrier design with different semiconductors and for different reactions.

“We hope that such systems will serve as a platform for driving a wide range of electrons to fuel-forming reactions using abundant feedstocks with only sunlight as the energy input,” Mohite says in the statement.

The device joins another game-changing product shared in a Rice research study in recent weeks. Last month, a Rice University lab led by Haotian Wang, the William Marsh Rice Trustee Chair and an associate professor at Rice, shared their findings on how their simple plug-and-play device removes carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction.

Rice also recently opened registration for its 20th anniversary of Energy Tech Venture Day. Click here to register for the event on Sept. 21.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy subsidiary secures Microsoft as largest-ever DAC carbon removal credit customer

major move

Occidental Petroleum’s Houston-based carbon capture, utilization and, sequestration (CCUS) subsidiary, 1PointFive, has inked a six-year deal to sell 500,000 metric tons of carbon dioxide removal credits to software giant Microsoft.

In a news release, 1Point5 says this agreement represents the largest-ever single purchase of carbon credits enabled by direct air capture (DAC). DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted.

Under the agreement, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“A commitment of this magnitude further demonstrates how one of the world’s largest corporations is integrating scalable [DAC] into its net-zero strategy,” says Michael Avery, president and general manager of 1PointFive. “Energy demand across the technology industry is increasing, and we believe [DAC] is uniquely suited to remove residual emissions and further climate goals.”

Brian Marrs, senior director for carbon removal and energy at Microsoft, says DAC plays a key role in Microsoft’s effort to become carbon-negative by 2030.

The carbon dioxide will be stored at 1PointFive’s first industrial-scale DAC plant, being built near Odessa. The $1.3 billion Stratos project, which 1Point5 is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 per year.

The facility is scheduled to open in mid-2025.

Aside from Microsoft, organizations that have agreed to buy carbon removal credits from 1Point5 include Amazon, Airbus, All Nippon Airways, the Houston Astros, the Houston Texans, and TD Bank.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Texas Gov. Greg Abbott demands answers from Houston power company following Beryl

investigation incoming

With around 270,000 homes and businesses still without power in the Houston area almost a week after Hurricane Beryl hit Texas, Gov. Greg Abbott on Sunday said he's demanding an investigation into the response of the utility that serves the area as well as answers about its preparations for upcoming storms.

“Power companies along the Gulf Coast must be prepared to deal with hurricanes, to state the obvious,” Abbott said at his first news conference about Beryl since returning to the state from an economic development trip to Asia.

While CenterPoint Energy has restored power to about 2 million customers since the storm hit on July 8, the slow pace of recovery has put the utility, which provides electricity to the nation’s fourth-largest city, under mounting scrutiny over whether it was sufficiently prepared for the storm that left people without air conditioning in the searing summer heat.

Abbott said he was sending a letter to the Public Utility Commission of Texas requiring it to investigate why restoration has taken so long and what must be done to fix it. In the Houston area, Beryl toppled transmission lines, uprooted trees and snapped branches that crashed into power lines.

With months of hurricane season left, Abbott said he's giving CenterPoint until the end of the month to specify what it'll be doing to reduce or eliminate power outages in the event of another storm. He said that will include the company providing detailed plans to remove vegetation that still threatens power lines.

Abbott also said that CenterPoint didn't have “an adequate number of workers pre-staged" before the storm hit.

Following Abbott's news conference, CenterPoint said its top priority was “power to the remaining impacted customers as safely and quickly as possible,” adding that on Monday, the utility expects to have restored power to 90% of its customers. CenterPoint said it was committed to working with state and local leaders and to doing a “thorough review of our response.”

CenterPoint also said Sunday that it’s been “investing for years” to strengthen the area’s resilience to such storms.

The utility has defended its preparation for the storm and said that it has brought in about 12,000 additional workers from outside Houston. It has said it would have been unsafe to preposition those workers inside the predicted storm impact area before Beryl made landfall.

Brad Tutunjian, vice president for regulatory policy for CenterPoint Energy, said last week that the extensive damage to trees and power poles hampered the ability to restore power quickly.

A post Sunday on CenterPoint's website from its president and CEO, Jason Wells, said that over 2,100 utility poles were damaged during the storm and over 18,600 trees had to be removed from power lines, which impacted over 75% of the utility's distribution circuits.

Things to know: Beryl in the rearview, Devon Energy's big deal, and events not to miss

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Hurricane Beryl's big impact

Hundreds of thousands of people in the Houston area likely won’t have power restored until this week, as the city swelters in the aftermath of Hurricane Beryl.

The storm slammed into Texas on July 8, knocking out power to nearly 2.7 million homes and businesses and leaving huge swaths of the region in the dark and without air conditioning in the searing summer heat.

Although repairs have restored power to nearly 1.4 million customers, the scale of the damage and slow pace of recovery has put CenterPoint Energy, which provides electricity to the nation's fourth-largest city, under mounting scrutiny over whether it was sufficiently prepared for the storm and is doing enough now to make things right.

Some frustrated residents have also questioned why a part of the country that is all too familiar with major storms has been hobbled by a Category 1 hurricane, which is the weakest kind. But a storm's wind speed, alone, doesn't determine how dangerous it can be. Click here to continue reading this article from the AP.

Big deal: Devon Energy to acquire Houston exploration, production biz in $5B deal

Devon Energy is buying Grayson Mill Energy's Williston Basin business in a cash-and-stock deal valued at $5 billion as consolidation in the oil and gas sector ramps up.

The transaction includes $3.25 billion in cash and $1.75 billion in stock.

Grayson Mill Energy, based in Houston, is an oil and gas exploration company that received an initial investment from private equity firm EnCap Investments in 2016.

The firm appears to be stepping back from energy sector as it sells off assets. Last month EnCap-backed XCL Resources sold its Uinta Basin oil and gas assets to SM Energy Co. and Northern Oil and Gas in a transaction totaling $2.55 billion. EnCap had another deal in June as well, selling some assets to Matador Resources for nearly $2 billion. Click here to continue reading.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • 2024 Young Leaders Institute: Renewable Energy and Climate Solutions is taking place July 15 to July 19 at Asia Society of Texas. Register now.
  • CCS/Decarbonization Project Development, Finance and Investment, taking place July 23 to 25, is the deepest dive into the economic and regulatory factors driving the success of the CCS/CCUS project development landscape. Register now.
  • The 5th Texas Energy Forum 2024, organized by U.S. Energy Stream, will take place on August 21 and 22 at the Petroleum Club of Houston. Register now.