The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photos by Jeff Fitlow/Rice University

A groundbreaking Rice University lab has made further strides in its work to make harvesting light energy more efficient and stable.

Presented on the cover of a June issue of Science, a study from Rice engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”

The change come from "seasoning" the FAPbI3 with 2D halide perovskites crystals, which the Mohite lab also developed a breakthrough synthesis process for last year

The 2D perovskites helped make the FAPbI3 films more stable. The study showed that films with 2D perovskites deteriorated after two days of generating electricity, while those with 2D perovskites had not started to degrade after 20 days.

“FAPbI3 films templated with 2D crystals were higher quality, showing less internal disorder and exhibiting a stronger response to illumination, which translated as higher efficiency," Isaac Metcalf, a Rice materials science and nanoengineering graduate student and a lead author on the study, said in the statement.

Additionally, researchers say their findings could make developing light-harvesting technologies cheaper, and can also allow light-harvesting panels to be lighter weight and more flexible.

"Perovskites are soluble in solution, so you can take an ink of a perovskite precursor and spread it across a piece of glass, then heat it up and you have the absorber layer for a solar cell,” Metcalf said. “Since you don’t need very high temperatures ⎯ perovskite films can be processed at temperatures below 150 Celsius (302 Fahrenheit) ⎯ in theory that also means perovskite solar panels can be made on plastic or even flexible substrates, which could further reduce costs.”

Mohite adds this has major implications for the energy transition at large.

“If solar electricity doesn’t happen, none of the other processes that rely on green electrons from the grid, such as thermochemical or electrochemical processes for chemical manufacturing, will happen,” Mohite said. “Photovoltaics are absolutely critical.”

The Mohite lab's process for creating 2D perovskites of the ideal thickness and purity was published in Nature Synthesis last fall. At the time, Mohite said the crystals "hold the key to achieving commercially relevant stability for solar cells."

About a year ago, the lab also published its work on developing a scalable photoelectrochemical cell. The research broke records for its solar-to-hydrogen conversion efficiency rate.
Woodside Energy has committed $12.5 million to a new partnership with Rice University. Photo via Instagram/WoodsideEnergy

Woodside Energy backs $12.5M clean energy accelerator for new technologies

howdy, partner

A global Australian energy company with its international operations in Houston has backed a new climatetech accelerator in partnership with Rice University.

Woodside Energy, headquartered in Australia with its global operations in Houston following its 2022 acquisition of BHP Group, has committed $12.5 million over the next five years to create the Woodside Rice Decarbonization Accelerator.

"The goal of the accelerator is to fast track the commercialization of innovative decarbonization technologies created in Rice labs," Rice University President Reginald DesRoches says to a crowd at the Ion at the initiative's announcement. "These technologies have the potential to make better batteries, transitistors, and other critical materials for energy technologies. In addition, the accelerator will work on manufacturing these high-value products from captured and converted carbon dioxide and methane."

"The Woodside Rice Decarbonization Accelerator will build on the work that Rice has been doing in advanced materials, energy, energy transition, and climate for many years. More than 20 percent of our faculty do some related work to energy and climate," he continues. "Harnessing their efforts alongside an esteemed partner like Woodside Energy is an exciting step that will undoubtedly have an impact far and wide."

Rice University announced the new climate tech initiative backed by Woodside Energy this week. Photo by Natalie Harms/InnovationMap

Woodside, which has over 800 employees based in Houston, has been a partner at the Ion since last spring. Daniel Kalms, Woodside Energy's CTO and executive vice president, explains that the new initiative falls in line with the three goals of Woodside's climate strategy, which includes keeping up with global energy demand, creating value, and conducting its business sustainably. The company has committed a total of $5 billion to new energy by 2030, Kalms says.

"We know that the world needs energy that is more affordable, sustainable, and secure to support the energy transition — and we want to provide that energy. Energy that is affordable, sustainable, and secure requires innovation and the application of new technology. That's what this is about," he says.

"Of course collaboration will be the key," Kalms continues. "By working with researchers, entrepreneurs, leading experts and parallel industries, we can combine our capability to solve collective challenges and create shared opportunities. That's why we are excited to be partnering with Rice."

The accelerator will be run by Paul Cherukuri, vice president of innovation at Rice University, and Aditya Mohite, associate professor of Chemical and Biomolecular Engineering and Materials Science and Nanoengineering. Additional Rice professors will be involved as well, Cherukuri says.

"Success for us will not be papers, it will be products," Cherukuri says of what Woodside wants from the partnership. "We picked faculty at Rice in particular who were interested in taking on this charge, and they were all faculty who created companies."

Last fall, Rice announced a grant and venture initiative to accelerate innovation from Rice in the biotech space.

------

This article originally ran on InnovationMap.

Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

Houston research team develops breakthrough process for light-harvesting crystals in DOE-backed project

solar success

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations.

“This research breakthrough is critical for the synthesis of 2D perovskites, which hold the key to achieving commercially relevant stability for solar cells and for many other optoelectronic device applications and fundamental light matter interactions,” Mohite said in a statement.

Traditional synthesis methods for creating 2D halide perovskites, which have been shown to offer a high-performance low-cost way to produce solar cells, have generated uneven crystal growth when attempting to reach a higher n value. And uneven crystal growth can result in a less reliable material, while a high n value can result in higher electrical conductivity, among other benefits.

The study shows how the kinetically controlled space confinement method can gradually increase n values in 2D halide perovskites, which will assist in the production of crystals with a certain thickness.

“We designed a way to slow down the crystallization and tune each kinetics parameter gradually to hit the sweet spot for phase-pure synthesis,” Jin Hou, a Ph.D. student at Rice and a lead author on a study, said in a statement.

The process is expected to improve the stability and lower the costs of emerging technologies in optoelectronics, or the study and application of light-emitting or light-detecting devices, and photovoltaics, the conversion of thermal energy into electricity.

"This work pushes the boundaries of higher quantum well 2D perovskites synthesis, making them a viable and stable option for a variety of applications,” Hou added.

Houston universities have been making major strides relating to crystallization processes in recent months.

In September, the University of Houston announced The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to establish the Welch Center for Advanced Bioactive Materials Crystallization. The center will build upon UH professor Jeffrey Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Over the summer, a team of researchers at UH also published a paper detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.
Rice University engineers have created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen. Photo courtesy Gustavo Raskoksy/Rice University

Rice University team breaks records with new sunlight-to-hydrogen device

big win

A team of Rice University engineers have developed a scalable photoelectrochemical cell that converts sunlight into clean hydrogen at a record-setting pace.

The lab led by Aditya Mohite, an associate professor at Rice, published the findings in a study in Nature Communications late last month, in collaboration with the National Renewable Energy Laboratory, which is backed by the Department of Energy. In it, the team details how they created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen.

Austin Fehr, a chemical and biomolecular engineering doctoral student at Rice and one of the study’s lead authors, says in a statement that the device "could open up the hydrogen economy and change the way humans make things from fossil fuel to solar fuel."

The device has a high solar-to-hydrogen conversion efficiency rate of 20.8 percent, which has yet to be reached with this type of technology, according to a release from Rice. In addition to its speed, this device is groundbreaking because it uses low-cost metal-halide perovskite semiconductors to power the reaction.

A photoreactor developed by Rice University’s Mohite research group and collaborators achieved a 20.8 percent solar-to-hydrogen conversion efficiency. Photo courtesy Gustavo Raskoksy/Rice University

“Using sunlight as an energy source to manufacture chemicals is one of the largest hurdles to a clean energy economy,” Fehr says in the statement. “Our goal is to build economically feasible platforms that can generate solar-derived fuels. Here, we designed a system that absorbs light and completes electrochemical water-splitting chemistry on its surface.”

To create the device the Mohite lab turned their existing solar cell into a reactor to split water into oxygen and hydrogen. However they continued running into issues with the semiconductors being "extremely unstable in water," according to Rice.

After two years of trials and errors, the team uncovered that by adding two layers of barriers to the semiconductors they were able to reach these record-breaking efficiency rates.

The team has also shown uses for their double barrier design with different semiconductors and for different reactions.

“We hope that such systems will serve as a platform for driving a wide range of electrons to fuel-forming reactions using abundant feedstocks with only sunlight as the energy input,” Mohite says in the statement.

The device joins another game-changing product shared in a Rice research study in recent weeks. Last month, a Rice University lab led by Haotian Wang, the William Marsh Rice Trustee Chair and an associate professor at Rice, shared their findings on how their simple plug-and-play device removes carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction.

Rice also recently opened registration for its 20th anniversary of Energy Tech Venture Day. Click here to register for the event on Sept. 21.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hobby debuts solar canopy as airport system reaches new sustainability milestone

solar solutions

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Aiports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

Houston Methodist leader on the push for sustainable health care and new local event

Q&A

Every industry can play a role in the energy transition, and Houston Methodist is leading the charge in the health care sector.

Culminating at this week’s inaugural Green ICU Conference, part of Houston Energy and Climate Startup Week, the health care system has spent the last three years taking a closer look at its environmental footprint—and showing other hospital systems and medical organizations how they too can make simple changes to reduce emissions.

The event, held tomorrow, Sept. 17, at TMC Helix Park, will bring together health care professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

In an interview with EnergyCapital, Dr. Faisal N. Masud, medical director of critical care at Houston Methodist and a champion for sustainability efforts across the system, shares the inspiration behind the event and what attendees can expect to take away.

Tell us about how the Green ICU Conference came to be.

Houston Methodist’s inaugural Green ICU conference is about three years in the making. It originated because Houston Methodist recognized the significant impact health care has on sustainability and the lack of similar initiatives in the U.S.

The Center for Critical Care at Houston Methodist launched a sustainability-focused ICU initiative, published a roadmap and became involved in international efforts to develop guidelines that many other organizations now use. Our work led to the creation of the first Green ICU Collaborative in the country, and the Green ICU Conference was established to share best practices and address the global impact of critical care on the environment.

What were some of the biggest takeaways from the collaborative, and how are they represented in this new event?

Through the Green ICU Collaborative, we’ve seen that health care professionals can make a significant impact on sustainability through simple, practical changes, and many solutions can be implemented without major costs or compromising patient care. Additionally, there’s a strong link between environmental stewardship and patient safety and quality. These lessons will be represented in the new Green ICU Conference by showcasing easy-to-adopt best practices, emphasizing the importance of sustainability in daily health care operations, and fostering a sense of shared responsibility among attendees to improve both patient outcomes and environmental impact.

Why are ICUs considered to be such carbon hot spots?

ICUs are considered carbon hot spots because they care for the sickest patients, requiring intensive therapies, numerous medications and a large amount of equipment, such as ventilators and pumps. This makes them the most resource- and energy-intensive areas in a hospital. A single day in the ICU can have a greenhouse gas impact equivalent to driving a car 1,000 kilometers.

The U.S. health care sector is responsible for approximately 8.5 percent of greenhouse gas emissions, and hospitals are the second-most energy-intensive commercial buildings in the country. With the Texas Medical Center being in the heart of Houston, it’s critical that health care organizations play a role in this area.

That’s why the Center for Critical Care launched a system-wide Green ICU Initiative with the Houston Methodist Office of Sustainability to help reduce our carbon impact and waste while continuing to provide unparalleled patient care. Innovation is part of our culture, and that extends into our sustainability efforts. Houston Methodist’s Green ICU initiative is the first-of-its-kind in the U.S.

What efforts has Houston Methodist taken to cut emissions?

The first step to cutting emissions is measuring an organization’s carbon footprint to determine the best path forward. Houston Methodist’s Office of Sustainability has aggregated two years of baseline emissions data pending third-party validation. The hospital has taken several steps to cut emissions, including implementing composting programs, installing solar panels, improving energy utilization and participating in global plastic recycling initiatives. These efforts are part of a broader commitment led by our Office of Sustainability to reduce the hospital’s environmental footprint.

Tell us a little more about the event. Who should attend? What do you expect to be some of the highlights?

The Green ICU Conference, taking place during Houston Energy and Climate Week, is focused on health care sustainability, bringing together health care professionals, engineers, experts and anyone interested in reducing health care’s environmental impact. With participants and speakers from six countries, the conference brings together leading experts who aim to raise awareness, share best practices and offer practical, easy-to-adopt solutions for making health care more sustainable.

Highlights include perspectives from leading voices in health care sustainability, real-world examples of successful sustainability initiatives and opportunities for networking and collaboration. Anyone interested in health care, sustainability,or making a positive impact in their community should consider attending.

And, because of increasing interest, we’ve opened up the opportunity for attendees to join virtually at no cost or in person.

What do you hope attendees take away? What are your major goals for the event?

The main goals of hosting the Green ICU Conference for the first time are to raise awareness about the environmental impact of health care; engage and empower attendees to implement easy, practical sustainability solutions; and foster a sense of shared community and responsibility.

I hope attendees leave the event feeling motivated and equipped to make meaningful changes in their own practices, whether that’s improving patient care, supporting their colleagues, or leaving their organization and environment in a better place for future generations.

Texas House Democrats urge Trump administration to restore $250M solar grant

solar grants

Eight Democratic members of the U.S. House from Texas, including two from Houston, are calling on the Trump administration to restore a nearly $250 million solar energy grant for Texas that’s being slashed by the U.S. Environmental Protection Agency (EPA).

In a letter to Lee Zeldin, head of the EPA, and Russell Vought, director of the federal Office of Management and Budget (OMB), the House members urged the two officials to reinstate the nearly $250 million grant, which was awarded to Texas under the $7 billion Biden-era Solar for All program. The Texas grant was designed to assist 28,000 low-income households in installing solar panels, aiming to reduce their energy bills.

“This administration has improperly withheld billions in congressionally appropriated funding that was intended to benefit everyday Americans,” the letter stated.

The letter claimed that numerous court rulings have determined the EPA cannot repeal already allocated funding.

“Congress made a commitment to families, small businesses, and communities across this country to lower their utility bills and reduce harmful pollution through investments in clean energy. The Solar for All program was part of that commitment, and the EPA’s actions to rescind this funding effectively undermine that congressional intent,” the House members wrote.

The six House members who signed the letter are:

  • U.S. Rep. Sylvia Garcia of Houston
  • U.S. Rep. Al Green of Houston
  • U.S. Rep. Greg Casar of Austin
  • U.S. Rep. Jasmine Crockett of Dallas
  • U.S. Rep. Lloyd Doggett of Austin
  • U.S. Rep. Julie Johnson of Dallas
  • U.S. Rep. Marc Veasey of Fort Worth

The nearly $250 million grant was awarded last year to the Harris County-led Texas Solar for All Coalition.

In a post on the X social media platform, Zeldin said the recently passed “One Big Beautiful Bill” killed the Greenhouse Gas Reduction Fund, which would have financed the $7 billion Solar for All program.

“The bottom line is this: EPA no longer has the statutory authority to administer the program or the appropriated funds to keep this boondoggle alive,” Zeldin said.