The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photos by Jeff Fitlow/Rice University

A groundbreaking Rice University lab has made further strides in its work to make harvesting light energy more efficient and stable.

Presented on the cover of a June issue of Science, a study from Rice engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”

The change come from "seasoning" the FAPbI3 with 2D halide perovskites crystals, which the Mohite lab also developed a breakthrough synthesis process for last year

The 2D perovskites helped make the FAPbI3 films more stable. The study showed that films with 2D perovskites deteriorated after two days of generating electricity, while those with 2D perovskites had not started to degrade after 20 days.

“FAPbI3 films templated with 2D crystals were higher quality, showing less internal disorder and exhibiting a stronger response to illumination, which translated as higher efficiency," Isaac Metcalf, a Rice materials science and nanoengineering graduate student and a lead author on the study, said in the statement.

Additionally, researchers say their findings could make developing light-harvesting technologies cheaper, and can also allow light-harvesting panels to be lighter weight and more flexible.

"Perovskites are soluble in solution, so you can take an ink of a perovskite precursor and spread it across a piece of glass, then heat it up and you have the absorber layer for a solar cell,” Metcalf said. “Since you don’t need very high temperatures ⎯ perovskite films can be processed at temperatures below 150 Celsius (302 Fahrenheit) ⎯ in theory that also means perovskite solar panels can be made on plastic or even flexible substrates, which could further reduce costs.”

Mohite adds this has major implications for the energy transition at large.

“If solar electricity doesn’t happen, none of the other processes that rely on green electrons from the grid, such as thermochemical or electrochemical processes for chemical manufacturing, will happen,” Mohite said. “Photovoltaics are absolutely critical.”

The Mohite lab's process for creating 2D perovskites of the ideal thickness and purity was published in Nature Synthesis last fall. At the time, Mohite said the crystals "hold the key to achieving commercially relevant stability for solar cells."

About a year ago, the lab also published its work on developing a scalable photoelectrochemical cell. The research broke records for its solar-to-hydrogen conversion efficiency rate.
Woodside Energy has committed $12.5 million to a new partnership with Rice University. Photo via Instagram/WoodsideEnergy

Woodside Energy backs $12.5M clean energy accelerator for new technologies

howdy, partner

A global Australian energy company with its international operations in Houston has backed a new climatetech accelerator in partnership with Rice University.

Woodside Energy, headquartered in Australia with its global operations in Houston following its 2022 acquisition of BHP Group, has committed $12.5 million over the next five years to create the Woodside Rice Decarbonization Accelerator.

"The goal of the accelerator is to fast track the commercialization of innovative decarbonization technologies created in Rice labs," Rice University President Reginald DesRoches says to a crowd at the Ion at the initiative's announcement. "These technologies have the potential to make better batteries, transitistors, and other critical materials for energy technologies. In addition, the accelerator will work on manufacturing these high-value products from captured and converted carbon dioxide and methane."

"The Woodside Rice Decarbonization Accelerator will build on the work that Rice has been doing in advanced materials, energy, energy transition, and climate for many years. More than 20 percent of our faculty do some related work to energy and climate," he continues. "Harnessing their efforts alongside an esteemed partner like Woodside Energy is an exciting step that will undoubtedly have an impact far and wide."

Rice University announced the new climate tech initiative backed by Woodside Energy this week. Photo by Natalie Harms/InnovationMap

Woodside, which has over 800 employees based in Houston, has been a partner at the Ion since last spring. Daniel Kalms, Woodside Energy's CTO and executive vice president, explains that the new initiative falls in line with the three goals of Woodside's climate strategy, which includes keeping up with global energy demand, creating value, and conducting its business sustainably. The company has committed a total of $5 billion to new energy by 2030, Kalms says.

"We know that the world needs energy that is more affordable, sustainable, and secure to support the energy transition — and we want to provide that energy. Energy that is affordable, sustainable, and secure requires innovation and the application of new technology. That's what this is about," he says.

"Of course collaboration will be the key," Kalms continues. "By working with researchers, entrepreneurs, leading experts and parallel industries, we can combine our capability to solve collective challenges and create shared opportunities. That's why we are excited to be partnering with Rice."

The accelerator will be run by Paul Cherukuri, vice president of innovation at Rice University, and Aditya Mohite, associate professor of Chemical and Biomolecular Engineering and Materials Science and Nanoengineering. Additional Rice professors will be involved as well, Cherukuri says.

"Success for us will not be papers, it will be products," Cherukuri says of what Woodside wants from the partnership. "We picked faculty at Rice in particular who were interested in taking on this charge, and they were all faculty who created companies."

Last fall, Rice announced a grant and venture initiative to accelerate innovation from Rice in the biotech space.

------

This article originally ran on InnovationMap.

Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

Houston research team develops breakthrough process for light-harvesting crystals in DOE-backed project

solar success

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations.

“This research breakthrough is critical for the synthesis of 2D perovskites, which hold the key to achieving commercially relevant stability for solar cells and for many other optoelectronic device applications and fundamental light matter interactions,” Mohite said in a statement.

Traditional synthesis methods for creating 2D halide perovskites, which have been shown to offer a high-performance low-cost way to produce solar cells, have generated uneven crystal growth when attempting to reach a higher n value. And uneven crystal growth can result in a less reliable material, while a high n value can result in higher electrical conductivity, among other benefits.

The study shows how the kinetically controlled space confinement method can gradually increase n values in 2D halide perovskites, which will assist in the production of crystals with a certain thickness.

“We designed a way to slow down the crystallization and tune each kinetics parameter gradually to hit the sweet spot for phase-pure synthesis,” Jin Hou, a Ph.D. student at Rice and a lead author on a study, said in a statement.

The process is expected to improve the stability and lower the costs of emerging technologies in optoelectronics, or the study and application of light-emitting or light-detecting devices, and photovoltaics, the conversion of thermal energy into electricity.

"This work pushes the boundaries of higher quantum well 2D perovskites synthesis, making them a viable and stable option for a variety of applications,” Hou added.

Houston universities have been making major strides relating to crystallization processes in recent months.

In September, the University of Houston announced The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to establish the Welch Center for Advanced Bioactive Materials Crystallization. The center will build upon UH professor Jeffrey Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Over the summer, a team of researchers at UH also published a paper detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.
Rice University engineers have created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen. Photo courtesy Gustavo Raskoksy/Rice University

Rice University team breaks records with new sunlight-to-hydrogen device

big win

A team of Rice University engineers have developed a scalable photoelectrochemical cell that converts sunlight into clean hydrogen at a record-setting pace.

The lab led by Aditya Mohite, an associate professor at Rice, published the findings in a study in Nature Communications late last month, in collaboration with the National Renewable Energy Laboratory, which is backed by the Department of Energy. In it, the team details how they created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen.

Austin Fehr, a chemical and biomolecular engineering doctoral student at Rice and one of the study’s lead authors, says in a statement that the device "could open up the hydrogen economy and change the way humans make things from fossil fuel to solar fuel."

The device has a high solar-to-hydrogen conversion efficiency rate of 20.8 percent, which has yet to be reached with this type of technology, according to a release from Rice. In addition to its speed, this device is groundbreaking because it uses low-cost metal-halide perovskite semiconductors to power the reaction.

A photoreactor developed by Rice University’s Mohite research group and collaborators achieved a 20.8 percent solar-to-hydrogen conversion efficiency. Photo courtesy Gustavo Raskoksy/Rice University

“Using sunlight as an energy source to manufacture chemicals is one of the largest hurdles to a clean energy economy,” Fehr says in the statement. “Our goal is to build economically feasible platforms that can generate solar-derived fuels. Here, we designed a system that absorbs light and completes electrochemical water-splitting chemistry on its surface.”

To create the device the Mohite lab turned their existing solar cell into a reactor to split water into oxygen and hydrogen. However they continued running into issues with the semiconductors being "extremely unstable in water," according to Rice.

After two years of trials and errors, the team uncovered that by adding two layers of barriers to the semiconductors they were able to reach these record-breaking efficiency rates.

The team has also shown uses for their double barrier design with different semiconductors and for different reactions.

“We hope that such systems will serve as a platform for driving a wide range of electrons to fuel-forming reactions using abundant feedstocks with only sunlight as the energy input,” Mohite says in the statement.

The device joins another game-changing product shared in a Rice research study in recent weeks. Last month, a Rice University lab led by Haotian Wang, the William Marsh Rice Trustee Chair and an associate professor at Rice, shared their findings on how their simple plug-and-play device removes carbon dioxide from air capture to induce a water-and-oxygen-based electrochemical reaction.

Rice also recently opened registration for its 20th anniversary of Energy Tech Venture Day. Click here to register for the event on Sept. 21.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy startups, leaders named finalists for 2025 Innovation Awards

Meet the Innovators

InnovationMap.com, EnergyCaptialHTX's sister website, has revealed the finalists for the 2025 Houston Innovation Awards, and the local energy sector — from startups to leaders and accelerators — is well-represented throughout the awards.

Taking place on November 13 at Greentown Labs, the fifth annual Houston Innovation Awards will honor the best of Houston's innovation ecosystem, including startups, entrepreneurs, mentors, and more.

This year's finalists were determined by our esteemed panel of judges, comprised of past award winners and InnovationMap editorial leadership.

The panel reviewed nominee applications across 10 prestigious categories to determine the finalists. They will select the winner for each category, except for Startup of the Year, which will be chosen by the public via online voting launching later this month.

The Trailblazer Award recipient will be announced in the coming weeks, and the rest of this year's winners will be unveiled live at the annual awards ceremony and event on November 13 at Greentown Labs.

Tickets are on sale now — including a limited number of corporate 10-packs — secure yours today.

Without further ado, here are the 2025 Houston Innovation Awards finalists:

Minority-founded Business

Honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation:

  • Capwell Services
  • Deep Anchor Solutions
  • Mars Materials
  • Torres Orbital Mining (TOM)
  • Wellysis USA

Female-founded Business

Honoring an innovative startup founded or co-founded by a woman:

  • Anning Corporation
  • Bairitone Health
  • Brain Haven
  • FlowCare
  • March Biosciences
  • TrialClinIQ

Energy Transition Business

Honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy and beyond:

  • Anning Corporation
  • Capwell Services
  • Deep Anchor Solutions
  • Eclipse Energy
  • Loop Bioproducts
  • Mars Materials
  • Solidec

Health Tech Business

Honoring an innovative startup within the health and medical technology sectors:

  • Bairitone Health
  • Corveus Medical
  • FibroBiologics
  • Koda Health
  • NanoEar
  • Wellysis USA

Deep Tech Business

Honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics and space sectors:

  • ARIX Technologies
  • Little Place Labs
  • Newfound Materials
  • Paladin Drones
  • Persona AI
  • Tempest Droneworx

Startup of the Year (People's Choice)

Honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an online voting experience:

  • Eclipse Energy
  • FlowCare
  • MyoStep
  • Persona AI
  • Rheom Materials
  • Solidec

Scaleup of the Year

Honoring an innovative later-stage startup that's recently reached a significant milestone in company growth:

  • Coya Therapeutics
  • Fervo Energy
  • Koda Health
  • Mati Carbon
  • Molecule
  • Utility Global

Incubator/Accelerator of the Year

Honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups:

  • Activate
  • Energy Tech Nexus
  • Greentown Labs
  • Healthtech Accelerator (TMCi)
  • Impact Hub Houston

Mentor of the Year

Honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs. Presented by Houston Community College:

  • Anil Shetty, Inform AI
  • Jason Ethier, EnergyTech Nexus
  • Jeremy Pitts, Activate
  • Joe Alapat, Liongard
  • Neal Dikeman, Energy Transition Ventures
  • Nisha Desai, Intention

Trailblazer Recipient

  • To be announced
---------

Interested in sponsoring the 2025 Houston Innovation Awards? Contact sales@innovationmap.com for details.

Austin energy startup Base Power opens Katy office & expands Houston service

power move

An Austin startup that pairs electricity with backup power has started doing business in Houston.

Base Power announced this spring that it was entering the Houston market, with an initial focus on Cy-Fair, Spring, Cinco Ranch and Mission Bend. Now, Base Power is offering its service to households within the city of Houston.

To support its growth in the Houston area, Base Power has opened an office and warehouse in Katy. More than 30 people now work there. Plans to expand the Katy location are underway.

Base Power provides electricity that’s complemented by home backup power. Homes don’t need to be using solar power to sign up for Base Power’s service.

The startup said its service automatically supplies power to a home when the electric grid fails.

“Unlike traditional backup systems with high upfront costs, Base earns revenue by providing services to the grid — enabling Houstonians to get reliable backup and real savings,” Base Power said.

In addition to its standard service, Base Power has begun offering technology known as the Generator Recharge Port. This component allows a portable generator to plug into the Base battery system to recharge batteries during extended power outages.

“Houston has long been the energy capital of Texas, yet it has also endured some of the nation’s most painful lessons about unreliable power,” said Zach Dell, co-founder and CEO of Base Power. “We see Houston not just as a place to expand, but as a proving ground for how the future of energy should work — resilient, dependable, and built to serve homeowners when it matters most.”

Dell is the only son of Austin tech billionaire Michael Dell, a Houston native.

Base Power’s expansion in Houston adds to its Texas presence. The company now serves homeowners in the Houston, Dallas-Fort Worth and Austin areas. A partnership with homebuilder Lennar and collaborations with two utilities, GVEC and the Bandera Electric Cooperative, are helping drive Base Power’s business.

Base Power has raised more than $270 million in funding since its founding in 2023. This includes a $200 million series B round that will help finance construction of the company’s first factory in Texas and help fuel Base Power’s national expansion.

The startup’s investors include Andreessen Horowitz, Lightspeed Venture Partners, Valor Equity Partners, Thrive Capital, Altimeter, Terrain and Trust.

Houston hub for clean energy startups names global founding partners

green team

EnergyTech Nexus, a Houston-based hub for clean energy startups, announced its coalition of Global Founding Partners last month at its Pilotathon event during Houston Energy and Climate Week.

The group of international companies will contribute financial and technical resources, as well as share their expertise with startup founders, according to a news release from EnergyTech Nexus.

“Our Global Founding Partners represent the highest standards of industrial leadership, technical expertise and commitment to innovation,” Juliana Garaizar, co-founding partner of EnergyTech Nexus, added in the release. “Their collaboration enables us to connect groundbreaking technologies with the resources, infrastructure, and markets needed to achieve global scale.”

Houston-based partners include:

  • Cemvita Inc.
  • Chevron Technology Ventures
  • Collide
  • Greentown Labs
  • Kauel
  • Oxy Technology Ventures
  • Revterra
  • Sunipro

“At Collide, we believe progress happens when the right people, data, and ideas come together. Partnering with EnergyTech Nexus allows us to support innovators with the insights and community they need to accelerate deployment at scale,” Collin McLelland, co-founder and CEO of Collide, a provider of generative artificial intelligence for the energy sector, said in the release.

"Revterra is thrilled to be a founding member of the EnergyTech Nexus community," Ben Jawdat, founder and CEO of kinetic battery technology company Revterra, added. "Building a strong network of collaborators, customers, and investors is critical for any startup — particularly when you're building novel hardware. The Energytech Nexus community has been incredible at bringing all of the right stakeholders together."

Other partners, many of which have a strong presence in Houston, include:

  • BBVA
  • EarthX
  • Endress+Hauser
  • Goodwin
  • Greenbackers Investment Capital
  • ISR Energy
  • Latham & Watkins LLP
  • Ormazabal
  • Repsol
  • STX Next
  • XGS Energy

Jason Ethier, co-founding partner of EnergyTech Nexus, said that partnerships with these companies will be "pivotal" in supporting the organization's community of founders and Houston's broader energy transition sector.

“The Energy and Climate industry deploys over $1.5 trillion in capital every year to meet our growing energy demands. Our global founding partners recognize that this energy must be delivered reliably, cost effectively, and sustainably, and have committed to ensuring that technology developed without our ecosystem can find a path to market through testing and piloting in real-world conditions," Ethier said. "The ecosystem they support here solidifies Houston as the global nexus for the energy transition.”

EnergyTech Nexus also recently announced a "strategic ecosystem partnership" with Greentown Labs, aimed at accelerating growth for clean energy startups. Read more here.