M&A moves

Houston energy company to combine with Chesapeake in $7.4B deal

Houston-based Southwestern Energy will combine with Oklahoma City-based Chesapeake Energy. Photo via swn.com

Chesapeake Energy and Southwestern Energy are combining in a $7.4 billion all-stock deal to form one of the biggest natural gas producers in the U.S.

There have been a string of deals in the energy sector, including the nearly $60 billion acquisition of Pioneer Natural Resources by ExxonMobil and a $53 billion deal between Chevron and Hess.

Southwestern shareholders will receive 0.0867 shares of Chesapeake common stock for each outstanding share of Southwestern common stock at closing.

Chesapeake shareholders will own about 60 percent of the combined company, while Southwestern shareholders will own approximately 40 percent.

The transaction, valued at $6.69 per share, will create a company that has large scale acreage in the Appalachia region and Haynesville, Louisiana. It has current net production of approximately 7.9 Bcfe/d with more than 5,000 gross locations and 15 years of inventory.

“The world is short energy and demand for our products is growing, both in the U.S. and overseas," Chesapeake CEO Nick Dell’Osso said in a prepared statement Thursday. "We will be positioned to deliver more natural gas at a lower cost, accelerating America’s energy reach and fueling a more affordable, reliable, and lower carbon future."

The combined company will build a facility in Houston to supply lower-cost, lower carbon energy to meet increasing domestic and international liquefied natural gas demand.

The combined company will have a new name, but that has not yet been disclosed.

The boards of both companies have approved the deal, which is expected to close in the second quarter. It still needs approval from Chesapeake and Southwestern shareholders.

Shares of Southwestern, based in Houston, declined more than 3 percent before the market opened, while shares of Chesapeake, based in Oklahoma City, Oklahoma, rose slightly.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News