M&A moves

Houston energy company to combine with Chesapeake in $7.4B deal

Houston-based Southwestern Energy will combine with Oklahoma City-based Chesapeake Energy. Photo via swn.com

Chesapeake Energy and Southwestern Energy are combining in a $7.4 billion all-stock deal to form one of the biggest natural gas producers in the U.S.

There have been a string of deals in the energy sector, including the nearly $60 billion acquisition of Pioneer Natural Resources by ExxonMobil and a $53 billion deal between Chevron and Hess.

Southwestern shareholders will receive 0.0867 shares of Chesapeake common stock for each outstanding share of Southwestern common stock at closing.

Chesapeake shareholders will own about 60 percent of the combined company, while Southwestern shareholders will own approximately 40 percent.

The transaction, valued at $6.69 per share, will create a company that has large scale acreage in the Appalachia region and Haynesville, Louisiana. It has current net production of approximately 7.9 Bcfe/d with more than 5,000 gross locations and 15 years of inventory.

“The world is short energy and demand for our products is growing, both in the U.S. and overseas," Chesapeake CEO Nick Dell’Osso said in a prepared statement Thursday. "We will be positioned to deliver more natural gas at a lower cost, accelerating America’s energy reach and fueling a more affordable, reliable, and lower carbon future."

The combined company will build a facility in Houston to supply lower-cost, lower carbon energy to meet increasing domestic and international liquefied natural gas demand.

The combined company will have a new name, but that has not yet been disclosed.

The boards of both companies have approved the deal, which is expected to close in the second quarter. It still needs approval from Chesapeake and Southwestern shareholders.

Shares of Southwestern, based in Houston, declined more than 3 percent before the market opened, while shares of Chesapeake, based in Oklahoma City, Oklahoma, rose slightly.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News