who's who

Houston financial services firm brings onboard energy veteran

Pickering Energy Partners entered into a collaborative partnership with Rick Mauro to support clients in carbon sequestration and methane mitigation efforts. Photo courtesy of Pickering Energy Partners

A Houston-based energy-focused financial services platform has brought onboard an industry veteran to offer a unique insight to its clients.

Pickering Energy Partners announced a collaborative partnership with energy veteran Rick Mauro to further support clients in carbon sequestration and methane mitigation efforts.

PEP ESG Consulting team’s clients will have access to comprehensive strategic and technical consulting services, which will cover a broader spectrum of environmental and sustainability needs according to the company.

Mauro brings energy transition and oil and gas expertise through his career at Halliburton and Mobil Oil. He has hands-on experience in various operational settings like onshore and offshore assets in North America, Australia, Asia Pacific, and Kuwait with his geology background. He also advises client teams at Halliburton subsidiary Landmark Services Line and consulting firm Decision Strategies.

“Rick’s extensive work with constituents across multiple organizational levels, from operations to executive management, brings a versatile and well-informed viewpoint to our projects,” Dan Romito, head of PEP ESG Consulting, says in a news release. “Our goal is to offer energy-focused clients a well-rounded and technically proficient approach to ESG benchmarking and reporting.”

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News