teamwork

Houston-based KBR taps new partnership for global zero-emission lithium technology

Houston-headquartered KBR is working on a new alliance for lithium extraction. Photo via kbr.com

A Houston engineering solutions company has teamed up with a company to advance zero-emission lithium extraction technology.

KBR (NYSE: KBR) has signed an alliance agreement with France-based GeoLith SAS to offer its advanced Direct Lithium Extraction (DLE) technology, Li-Capt, which allows for zero-emission lithium extraction from untapped sources like oil well brines and geothermal.

"We are excited to collaborate with GeoLith to pioneer advancements in accessing currently untapped sources of lithium to meet the world's increasing lithium-ion battery demand,” KBR President Jay Ibrahim says in a news release. “This alliance supports the global transition towards electrification and reinforces our commitment to a net-zero carbon future. As a world leader in evaporation and crystallization technologies, KBR is well positioned to provide end-to-end solutions essential to the development of sustainable mobility."

Per the agreement, KBR will serve as the exclusive global licensor of GeoLith's Li-Capt technology. The Li-Capt tech helps produce pure lithium concentrate and is adaptable to brine compositions and extraction sources. KBR already boasts an existing suite of battery material technologies like PureLiSM, which is a high purity lithium production technology. The combination of the two technologies aim to provide clients with solutions to produce battery-grade lithium carbonate or lithium hydroxide monohydrate. Those are key components for advanced batteries in electric vehicles.

“The transition to electrification requires strong partnerships across the value chain, and we are proud to work with KBR to advance and commercialize our technology on a global scale," Jean-Philippe Gibaud, CEO of GeoLith SAS, says in the release. "Our Li-Capt technology ensures zero-emission lithium extraction, enabling the production of lithium concentrates from a process technology that achieves unparalleled levels of extraction efficiency and lithium selectivity."

KBR was recently awarded a contract by First State Hydrogen, which is building an electrolysis-powered green hydrogen production project. The study is part of First State Hydrogen's plan to provide clean energy to Delaware and the U.S. mid-Atlantic region. Additionally, KBR’s K-GreeN technology has been selected by a group of organizations — including Lotte Chemical, KNOC (Korea National Oil Corp), and Samsung Engineering — for the Sarawak, Malaysia-based H2biscus green ammonia project being developed by Lotte Chemical. The K-GreeN is a proprietary green ammonia development process. According to the company, KBR has licensed, engineered, or constructed over 250 ammonia plants since its founding in 1943.

Trending News

A View From HETI

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Trending News