teamwork

Houston-based KBR taps new partnership for global zero-emission lithium technology

Houston-headquartered KBR is working on a new alliance for lithium extraction. Photo via kbr.com

A Houston engineering solutions company has teamed up with a company to advance zero-emission lithium extraction technology.

KBR (NYSE: KBR) has signed an alliance agreement with France-based GeoLith SAS to offer its advanced Direct Lithium Extraction (DLE) technology, Li-Capt, which allows for zero-emission lithium extraction from untapped sources like oil well brines and geothermal.

"We are excited to collaborate with GeoLith to pioneer advancements in accessing currently untapped sources of lithium to meet the world's increasing lithium-ion battery demand,” KBR President Jay Ibrahim says in a news release. “This alliance supports the global transition towards electrification and reinforces our commitment to a net-zero carbon future. As a world leader in evaporation and crystallization technologies, KBR is well positioned to provide end-to-end solutions essential to the development of sustainable mobility."

Per the agreement, KBR will serve as the exclusive global licensor of GeoLith's Li-Capt technology. The Li-Capt tech helps produce pure lithium concentrate and is adaptable to brine compositions and extraction sources. KBR already boasts an existing suite of battery material technologies like PureLiSM, which is a high purity lithium production technology. The combination of the two technologies aim to provide clients with solutions to produce battery-grade lithium carbonate or lithium hydroxide monohydrate. Those are key components for advanced batteries in electric vehicles.

“The transition to electrification requires strong partnerships across the value chain, and we are proud to work with KBR to advance and commercialize our technology on a global scale," Jean-Philippe Gibaud, CEO of GeoLith SAS, says in the release. "Our Li-Capt technology ensures zero-emission lithium extraction, enabling the production of lithium concentrates from a process technology that achieves unparalleled levels of extraction efficiency and lithium selectivity."

KBR was recently awarded a contract by First State Hydrogen, which is building an electrolysis-powered green hydrogen production project. The study is part of First State Hydrogen's plan to provide clean energy to Delaware and the U.S. mid-Atlantic region. Additionally, KBR’s K-GreeN technology has been selected by a group of organizations — including Lotte Chemical, KNOC (Korea National Oil Corp), and Samsung Engineering — for the Sarawak, Malaysia-based H2biscus green ammonia project being developed by Lotte Chemical. The K-GreeN is a proprietary green ammonia development process. According to the company, KBR has licensed, engineered, or constructed over 250 ammonia plants since its founding in 1943.

Trending News

A View From HETI

Syzygy Plasmonics will develop a facility, known as NovaSAF 1, to convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

Trending News