at the helm

New CEO named to batteries co., to build out direct lithium extraction operations globally

International Battery Metals announced the appointment of Iris Jancik as CEO. Photo via IBAT

A Houston- and Vancouver-based battery materials company has named a new CEO, effective later this summer.

International Battery Metals (IBAT) announced the appointment of Iris Jancik as CEO. She will focus on expanding commercial deployment of IBAT's patented modular direct lithium extraction (DLE) plants, and begin in the role in mid-August.

Currently, IBAT is commissioning the DLE plant with an initial design capacity of 5,000 metric tons a year. The plant expects to begin lithium production in June. The plant will process brine produced from lithium-containing waste-magnesium salts, and the lithium chloride product will provide feed for high-purity lithium carbonate production by US Mag.

The plant is the first commercial DLE plant in North America and the first modular DLE plant in the world. IBAT also recently announced the installation of its first commercial lithium production plant, which is co-located at US Magnesium's (US Mag) operations outside Salt Lake City, Utah.

Jancik served as CEO of IDE Americas, a subsidiary of IDE Technologies, which is a global desalination and water treatment solutions company prior to joining IBAT. She holds an M.B.A. in international business from Texas A&M University, and brings expertise as an engineer with extensive global contracting and management experience.

"Iris brings deep expertise in water infrastructure, which is core to our DLE water-recycling process, and the requisite global commercial chops to build on IBAT's momentum," John Burba, CTO and director of International Battery Metals, says in a news release. "I expect IBAT to take on new frontiers for growth with Iris at the helm and look forward to collaborating with her."

Jancik will be taking over for the person credited with accelerating IBAT's technology to its first commercial phase , Garry Flowers, who joined IBAT for a two-year period, starting as president in July 2022 and then named CEO in December 2022.

According to IBAT, IBAT's modular lithium extraction plant has been independently verified to extract more than 97% lithium from brine. Lithium production is rising to reach approximately 180,000 metric tons in 2023 with approximately 22,000 metric tons coming from an established DLE project in Argentina.

"IBAT's proprietary commercialized DLE technology is proven, ready to push-start a US lithium industry, and revolutionize global production, making this a prime time to join the organization," Jancik adds. "Burgeoning battery demand requires a wholesale change in how lithium is produced, and IBAT delivers the right combination of efficiency, sustainability and scalability to reach new heights.”

Trending News

A View From HETI

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.

Trending News