Announced earlier this summer as incoming CEO of International Battery Metals, Iris Jancik has officially started her new job. Photo courtesy of IBAT

A Houston batteries company officially has a new CEO.

Originally announced as incoming CEO earlier this summer, Iris Jancik has taken the helm of International Battery Metals Ltd., a Houston and Vancouver-based developer of patented modular direct lithium extraction (DLE) plants.

She takes on the new role following IBAT's July announcement that it achieved the "first lithium from the only modular DLE operation in the world and the first commercial DLE operation in North America," according to the company. The milestone was achieved at IBAT's facility outside Salt Lake City, Utah, a plant co-located at the operations of US Magnesium.

With IBAT achieving its first commercial operations, Jancik will focus on its continued conversations with large industrial companies — automakers, oil and gas companies, and more — to expand prospects and stakeholders.

"The timing of IBAT's breakthrough technology is ideal given soaring demand for lithium batteries to power EVs and energy storage. I look forward to accelerating our growth as we expand commercially to meeting this demand with an unmatched lithium extraction technology that can be cost-effectively and quickly deployed, sustainably operated to respect water resources, and easily scalable in a variety of brine resources," Jancik says in a news release. "I can think of no one better to partner with on this journey than our chief technology officer, founder and DLE pioneer, John Burba."

Garry Flowers, who joined IBAT as president in July 2022 before being named CEO in December of the same year, preceded Jancik as CEO. Prior to joining IBAT, Jancik served as CEO of IDE Americas. She holds an MBA in international business from Texas A&M University.

The newly launched plant will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

Houston company's commercial direct lithium extraction plant goes live

up and running

A Houston company has launched operations with what it's calling the world’s first commercial modular direct-lithium extraction plant.

International Battery Metals has reported that its new plant — just outside Salt Lake City, Utah, and co-located with US Magnesium LLC — is up and running. The plant, originally announced earlier this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

"This achievement is momentous for IBAT and a harbinger for an industry-transformation to significantly boost lithium production on a more cost-effective and sustainable basis, clearing a path for supplies of lower-priced, high-quality lithium for EV batteries and large-scale grid backup battery installations," John Burba, founder and CTO of IBAT, says in a news release. "This kicks off a U.S. lithium production renaissance and creates the potential for a sea change in global lithium supplies."

According to the company, IBAT is expected to expand production by installing additional columns on the same DLE modular platform with a goal of increasing capacity.

IBAT's patented technology is low cost, scalable, and sustainable. It reports that it's the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

Under its agreement with US Magnesium, IBAT will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

Earlier this summer, IBAT named Iris Jancik as the company's CEO. She will focus on expanding commercial deployment of IBAT's patented modular direct lithium extraction (DLE) plants, and begin in the role in mid-August.

International Battery Metals announced the appointment of Iris Jancik as CEO. Photo via IBAT

New CEO named to batteries co., to build out direct lithium extraction operations globally

at the helm

A Houston- and Vancouver-based battery materials company has named a new CEO, effective later this summer.

International Battery Metals (IBAT) announced the appointment of Iris Jancik as CEO. She will focus on expanding commercial deployment of IBAT's patented modular direct lithium extraction (DLE) plants, and begin in the role in mid-August.

Currently, IBAT is commissioning the DLE plant with an initial design capacity of 5,000 metric tons a year. The plant expects to begin lithium production in June. The plant will process brine produced from lithium-containing waste-magnesium salts, and the lithium chloride product will provide feed for high-purity lithium carbonate production by US Mag.

The plant is the first commercial DLE plant in North America and the first modular DLE plant in the world. IBAT also recently announced the installation of its first commercial lithium production plant, which is co-located at US Magnesium's (US Mag) operations outside Salt Lake City, Utah.

Jancik served as CEO of IDE Americas, a subsidiary of IDE Technologies, which is a global desalination and water treatment solutions company prior to joining IBAT. She holds an M.B.A. in international business from Texas A&M University, and brings expertise as an engineer with extensive global contracting and management experience.

"Iris brings deep expertise in water infrastructure, which is core to our DLE water-recycling process, and the requisite global commercial chops to build on IBAT's momentum," John Burba, CTO and director of International Battery Metals, says in a news release. "I expect IBAT to take on new frontiers for growth with Iris at the helm and look forward to collaborating with her."

Jancik will be taking over for the person credited with accelerating IBAT's technology to its first commercial phase , Garry Flowers, who joined IBAT for a two-year period, starting as president in July 2022 and then named CEO in December 2022.

According to IBAT, IBAT's modular lithium extraction plant has been independently verified to extract more than 97% lithium from brine. Lithium production is rising to reach approximately 180,000 metric tons in 2023 with approximately 22,000 metric tons coming from an established DLE project in Argentina.

"IBAT's proprietary commercialized DLE technology is proven, ready to push-start a US lithium industry, and revolutionize global production, making this a prime time to join the organization," Jancik adds. "Burgeoning battery demand requires a wholesale change in how lithium is produced, and IBAT delivers the right combination of efficiency, sustainability and scalability to reach new heights.”

Standard Lithium retaining operatorship, while Equinor will support through its core competencies, like subsurface and project execution capabilities. Photo via Equinor.com

Equinor makes big investment into lithium projects in Arkansas, East Texas

eyes on LI

A Norwegian international energy company has entered into a deal to take a 45-percent share in two lithium project companies in Southwest Arkansas and East Texas.

Equinor, which has its U.S. headquarters in Houston, has reached an agreement with Vancouver, Canada-based Standard Lithium Ltd. to make the acquisition. Standard Lithium retaining operatorship, while Equinor will support through its core competencies, like subsurface and project execution capabilities.

“Sustainably produced lithium can be an enabler in the energy transition, and we believe it can become an attractive business. This investment is an option with limited upfront financial commitment. We can utilise core technologies from oil and gas in a complementary partnership to mature these projects towards a possible final investment decision,” says Morten Halleraker, senior vice president for New Business and Investments in Technology, Digital and Innovation at Equinor, in a news release.

Standard Lithium retains the other 55 percent of the projects. Per the deal, will pay $30 million in past costs net to the acquired interest. The company also agreed to carry Standard Lithium's capex of $33 million "to progress the assets towards a possible final investment decision," per the release. Additionally, Equinor will make milestone payments of up to $70 million in aggregate to Standard Lithium should a final investment decision be taken.

Lithium is regarded as important to the energy transition due to its use in battery storage, including in electric vehicles. Direct Lithium Extraction, or DLE, produces the mineral from subsurface reservoirs. New technologies have the potential to improve this production method while lowering the environmental footprint.

Earlier this month, Houston-based International Battery Metals, whose technology offers an eco-friendly way to extract lithium compounds from brine, announced that it's installing what it’s billing as the world’s first commercial modular direct-lithium extraction plant located at US Magnesium’s operations outside Salt Lake City. The plant is expected to go online later this year.

The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. Photo via ibatterymetals.com

Houston company plans to install the first commercial direct lithium extraction plant in the US

coming soon

Houston-based International Battery Metals, whose technology offers an eco-friendly way to extract lithium compounds from brine, is installing what it’s billing as the world’s first commercial modular direct-lithium extraction plant.

The mobile facility is located at US Magnesium’s operations outside Salt Lake City. The plant, expected to go online later this year, will process brine produced from lithium-containing waste-magnesium salts. The resulting lithium chloride product will provide feedstock for high-purity lithium carbonate generated by US Magnesium.

Under its agreement with US Magnesium, International Battery Metals (IBAT) will receive royalties on lithium sales, as well as payments for equipment operations based on lithium prices and performance.

IBAT says its patented technology is the only system that delivers a 97 percent extraction rate for lithium chloride from brine water, with up to 98 percent of water recycled and with minimal use of chemicals.

“Commercial operations will serve growing lithium demand from automakers for electric vehicle batteries, as well as energy storage batteries to support growing electricity demand and to balance the grid from increased renewable energy integration,” IBAT says in a news release.

Initially, the less than three-acre plant will annually produce 5,000 metric tons of lithium chloride. The modular plant was fabricated in Lake Charles, Louisiana.

“Our commercial operations with US Mag will advance a productive lithium extraction operation,” says Garry Flowers, CEO of IBAT. “Given current lithium demand, supply dependence on China, and permitting challenges, our expected commercial operations are coming at an ideal time to produce lithium at scale in the U.S.”

IBAT says the technology has been validated by independent reviewers and has been tested in Texas, California, Michigan, Ohio, and Oklahoma, as well as Argentina, Canada, Chile, and Germany.

IBAT says its modular concept positions the company to be a key supplier for rising U.S. lithium demand, providing an alternative to China and other global suppliers.

John Burba, founder, CTO and director of IBAT, says the modular extraction technology “will be the basis of future lithium extraction from brine resources around the world.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie signs deal to supply wind power for Texas data center

wind deal

Houston-based Engie North America, which specializes in generating low-carbon power, has sealed a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

Under the tentative agreement, Cipher could buy as much as 300 megawatts of clean energy from one of Engie’s wind projects. The financial terms of the deal weren’t disclosed.

Cipher Mining develops and operates large data centers for cryptocurrency mining and high-performance computing.

In November, New York City-based Cipher said it bought a 250-acre site in West Texas for a data center with up to 100 megawatts of capacity. Cipher paid $4.1 million for the property.

“By pairing the data center with renewable energy, this strategic collaboration supports the use of surplus energy during periods of excess generation, while enhancing grid stability and reliability,” Engie said in a news release about the Cipher agreement.

The Engie-Cipher deal comes amid the need for more power in Texas due to several factors. The U.S. Energy Information Administration reported in October that data centers and cryptocurrency mining are driving up demand for power in the Lone Star State. Population growth is also putting pressure on the state’s energy supply.

Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. Also last year, Engie signed a new contract with Meta (Facebook's owner) and expanded its partnership with Google in the U.S. and Belgium.

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”