patent progress

Houston sustainability startup secures major milestone for energy efficient tool

This innovative window treatment startup announced new global patents. Photo courtesy of INOVUES

A Houston company that retrofits windows with smart glass innovations to reduce energy use is celebrating a handful of patents across North America and China.

INOVUES announced it secured several new patents from the United States Patent and Trademark Office, the Canadian Intellectual Patent Office, and the China National Intellectual Property Administration.

“These newly awarded patents reinforce our commitment to innovation and position us as a trusted partner for investors and industry partners,” says Anas Al Kassas, INOVUES founder and CEO, in a news release.

The company now has a total of four patents granted in the United States, Canada, and China, and four more patents pending in the United States, Canada, and the European Union. Additionally, INOVUES has trademark protection granted in the EU, United Kingdom, and China.

INOVUES's unique window treatment — its Insulating Glass Retrofit (IGR) and Secondary Glass Retrofit (SWR) technologies — directly impacts the built environment. The process includes 70 percent fewer materials compared to traditional methods and building owners see a 40 percent reduction in reduction in energy consumption following installation.

Last year, the company raised $2.75 million in venture funding. Kassas said at the time that the funding was slated o be used to scale up the team and identify the best markets to target customers, adding that he was looking for regions with rising energy rates and sizable incentives for companies making energy efficient changes.

"We were able to now implement our technology in over 4 million square feet of building space — from Boston, Seattle, Los Angeles, New York City, Portland, and very soon in Canada," he said in a December episode of the Houston Innovators Podcast.

Anas Al Kassas is the CEO and founder of INOVUES. Photo courtesy

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News