emissions station

Houston puts it in park at No. 8 on new list of U.S. cities with worst traffic

Shocker: Houston made another list of cities with the worst traffic. Courtesy photo

Few things are more frustrating for Houston drivers than sitting in bumper-to-bumper traffic. You're late, you're stuck, and you're wasting time and gas — every single day. It's no surprise that the Bayou City has ranked inside the top 10 in a new list of cities with the worst traffic.

The average Houston driver lost 62 hours to traffic delays in 2023, according to Inrix's latest Global Traffic Scorecard. That's 16 hours more than the time tallied in 2022, and 20 hours more than the national average of 42 hours lost. Ouch!

Trends across the country after the pandemic continue to contribute to congestion. Remote work has led to a longer stretch of high-traffic hours instead of the usual pre-9 am and post-5 pm rush hour surges — and less predictable peaks at that.

"On any given day, everybody might be going into the office and no one is expecting it," David Schrank, a senior research scientist at Texas A&M Transportation Institute, told The Hill in June 2024. "What if next Monday everybody gets called in? Then boom — it's gridlock."

On top of that, truck-related congestion (as anyone driving across Texas knows) has increased with the continued rise of e-commerce and home delivery, with one truck equaling two to three cars on the road.

To see where congestion is the biggest problem nationwide, Stacker ranked the 25 cities in the U.S. with the most time lost per driver due to congestion, according to data from Inrix. Houston lands at No. 8, the worst in Texas. Of course, Houstonians don't need a new survey to tell them just how miserable our traffic is - as our late, beloved columnist Ken Hoffman expressed earlier this year.

Three other cities in Texas have made the top 25-worst list: Dallas is No. 17, Austin is No. 21, and San Antonio rounds out the whole list at No. 25.

Stacker's analysis includes how much delays cost drivers based on median hourly wages in each metro area, per the Bureau of Labor Statistics, and comparisons to pre-COVID-19 pandemic hours lost, measured in 2019. Inrix calculated commute times by looking exclusively at the time it takes to get to and from major employment centers based on anonymized GPS data.

Downtown speed is the speed at which a commuter should expect to travel 1 mile into the city's downtown or central business area during peak morning hours, and the first quarter of 2024 versus the first quarter of 2023 metric is the change in travel times during those two periods.

———

This article originally ran on CultureMap.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News