POWER MOVE

Houston startup with revolutionary battery technology opens new labs

TexPower's founders — Board Chairman Arumugam Manthiram, CTO Wangda Li, and CEO Evan Erickson, respectively — celebrated the opening of the company's new lab space. Photo courtesy of TexPower

A Houston startup founded off research out of a Texas university has cut the ribbon on its new lab space.

TexPower EV Technologies Inc. celebrated the opening of its 6,000-square-foot laboratory and three-ton-per-year pilot production line at a ribbon-cutting event last week. The Northwest Houston site is located at 6935 Brittmoore Rd.

The new space will help the company further commercialize its cobalt-free lithium-ion cathode, lithium nickel manganese aluminum oxide (NMA). The technology is game changing for the electrification of the United States, including the rapid adoption of electric vehicles.

Currently, the country is experiencing a supply chain crisis, says Evan Erickson, co-founder and CEO of the company, at the event. Most of the world's cobalt, a material traditionally used in lithium-ion cathodes, is sourced primarily from the Congo and refinement is mostly controlled by China, he explains.

For these reasons, Cathodes are the most expensive component of lithium-ion batteries. But TexPower has a unique technology to solve this supply chain issue, and now with its new labs, is one step closer to commercialization of its materials.

TexPower spun out of the University of Texas at Austin in 2019. The company was co-founded by Erickson with CTO Wangda Li and Board Chairman Arumugam Manthiram, a professor at UT whose lithium-ion battery research fuels the foundation of the company.

“We want to point out how lucky we are — as a company and as scientists," Erickson says at the ribbon cutting event. "It’s not common that you see something you work on in academia turn into something that can become commercially successful.”

Prior to the newly built labs, TexPower operated out of the University of Houston's Tech Bridge. The company intends to raise additional funding to support its expansion.

According to the company, the new three-ton-per-year pilot line is the first step toward building a manufacturing facility that's capable of producing up to 50 times more the amount of cathode with a goal to impact markets such as defense, power tools, and eVTOL.

CEO Evan Erickson celebrated the new lab space opening last week

Photo courtesy of TexPower

This article originally ran on InnovationMap.


Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News